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“The impact of Jim Gray’s thinking is continuing to get people to think in a new 
way about how data and software are redefining what it means to do science.”

—Bill Gates

“I often tell people working in eScience that they aren’t in this field because  
they are visionaries or super-intelligent—it’s because they care about science  

and they are alive now. It is about technology changing the world, and science 
taking advantage of it, to do more and do better.”

—Rhys FRancis, austRalian eReseaRch inFRastRuctuRe council

“One of the greatest challenges for 21st-century science is how we respond to this 
new era of data-intensive science. This is recognized as a new paradigm beyond 

experimental and theoretical research and computer simulations of natural 
phenomena—one that requires new tools, techniques, and ways of working.”

—DouGlas Kell, univeRsity oF ManchesteR

“The contributing authors in this volume have done an extraordinary job of  
helping to refine an understanding of this new paradigm from a variety of  

disciplinary perspectives.”
—GoRDon Bell, MicRosoFt ReseaRch

aBoUT THe FoUrTH ParadiGM 
This book presents the first broad look at the rapidly emerging field of data- 
intensive science, with the goal of influencing the worldwide scientific and com-
puting research communities and inspiring the next generation of scientists. 
Increasingly, scientific breakthroughs will be powered by advanced computing 
capabilities that help researchers manipulate and explore massive datasets. The 
speed at which any given scientific discipline advances will depend on how well 
its researchers collaborate with one another, and with technologists, in areas of 
eScience such as databases, workflow management, visualization, and cloud- 
computing technologies. This collection of essays expands on the vision of pio-
neering computer scientist Jim Gray for a new, fourth paradigm of discovery based 
on data-intensive science and offers insights into how it can be fully realized. 
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gordon bell |  Microsoft Research

Foreword

his book is about a new, fourth paradigm for science based on data- 
intensive computing. In such scientific research, we are at a stage of de-
velopment that is analogous to when the printing press was invented. 
Printing took a thousand years to develop and evolve into the many 

forms it takes today. Using computers to gain understanding from data created and 
stored in our electronic data stores will likely take decades—or less. The contribut-
ing authors in this volume have done an extraordinary job of helping to refine an 
understanding of this new paradigm from a variety of disciplinary perspectives. 

In many instances, science is lagging behind the commercial world in the abil-
ity to infer meaning from data and take action based on that meaning. However, 
commerce is comparatively simple: things that can be described by a few numbers 
or a name are manufactured and then bought and sold. Scientific disciplines can-
not easily be encapsulated in a few understandable numbers and names, and most 
scientific data does not have a high enough economic value to fuel more rapid de-
velopment of scientific discovery.

It was Tycho Brahe’s assistant Johannes Kepler who took Brahe’s catalog of sys-
tematic astronomical observations and discovered the laws of planetary motion. 
This established the division between the mining and analysis of captured and 
carefully archived experimental data and the creation of theories. This division is 
one aspect of the Fourth Paradigm. 

In the 20th century, the data on which scientific theories were based was often 
buried in individual scientific notebooks or, for some aspects of “big science,” stored 
on magnetic media that eventually become unreadable. Such data, especially from 
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individuals or small labs, is largely inaccessible. It is likely to be thrown out when 
a scientist retires, or at best it will be held in an institutional library until it is dis-
carded. Long-term data provenance as well as community access to distributed data 
are just some of the challenges. 

Fortunately, some “data places,” such as the National Center for Atmospheric 
Research1 (NCAR), have been willing to host Earth scientists who conduct experi-
ments by analyzing the curated data collected from measurements and computa-
tional models. Thus, at one institution we have the capture, curation, and analysis 
chain for a whole discipline. 

In the 21st century, much of the vast volume of scientific data captured by new 
instruments on a 24/7 basis, along with information generated in the artificial 
worlds of computer models, is likely to reside forever in a live, substantially publicly 
accessible, curated state for the purposes of continued analysis. This analysis will 
result in the development of many new theories! I believe that we will soon see a 
time when data will live forever as archival media—just like paper-based storage—
and be publicly accessible in the “cloud” to humans and machines. Only recently 
have we dared to consider such permanence for data, in the same way we think of 
“stuff” held in our national libraries and museums! Such permanence still seems 
far-fetched until you realize that capturing data provenance, including individual 
researchers’ records and sometimes everything about the researchers themselves, 
is what libraries insist on and have always tried to do. The “cloud” of magnetic 
polarizations encoding data and documents in the digital library will become the 
modern equivalent of the miles of library shelves holding paper and embedded ink 
particles. 

In 2005, the National Science Board of the National Science Foundation pub-
lished “Long-Lived Digital Data Collections: Enabling Research and Education in 
the 21st Century,” which began a dialogue about the importance of data preserva-
tion and introduced the issue of the care and feeding of an emerging group they 
identified as “data scientists”: 

The interests of data scientists—the information and computer scientists, 
database and software engineers and programmers, disciplinary experts, 
curators and expert annotators, librarians, archivists, and others, who are 
crucial to the successful management of a digital data collection—lie in 
having their creativity and intellectual contributions fully recognized.” [1]

1 www.ncar.ucar.edu
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xiiiTHE FourTH Paradigm

The FourTh Paradigm: a Focus on daTa-inTensive sysTems  
and scienTiFic communicaTion

In Jim Gray’s last talk to the Computer Science and Telecommunications Board on 
January 11, 2007 [2], he described his vision of the fourth paradigm of scientific 
research. He outlined a two-part plea for the funding of tools for data capture, cu-
ration, and analysis, and for a communication and publication infrastructure. He 
argued for the establishment of modern stores for data and documents that are on 
par with traditional libraries. The edited version of Jim’s talk that appears in this 
book, which was produced from the transcript and Jim’s slides, sets the scene for 
the articles that follow.

Data-intensive science consists of three basic activities: capture, curation, and 
analysis. Data comes in all scales and shapes, covering large international ex-
periments; cross-laboratory, single-laboratory, and individual observations; and  
potentially individuals’ lives.2 The discipline and scale of individual experiments  
and especially their data rates make the issue of tools a formidable problem.  
The Australian Square Kilometre Array of radio telescopes project,3 CERN’s Large 
Hadron Collider,4 and astronomy’s Pan-STARRS5 array of celestial telescopes are 
capable of generating several petabytes (PB) of data per day, but present plans limit 
them to more manageable data collection rates. Gene sequencing machines are 
currently more modest in their output due to the expense, so only certain coding 
regions of the genome are sequenced (25 KB for a few hundred thousand base pairs) 
for each individual. But this situation is temporary at best, until the US$10 million 
X PRIZE for Genomics6 is won—100 people fully sequenced, in 10 days, for under 
US$10,000 each, at 3 billion base pairs for each human genome. 

Funding is needed to create a generic set of tools that covers the full range of 
activities—from capture and data validation through curation, analysis, and ulti-
mately permanent archiving. Curation covers a wide range of activities, starting 
with finding the right data structures to map into various stores. It includes the 
schema and the necessary metadata for longevity and for integration across instru-
ments, experiments, and laboratories. Without such explicit schema and metadata, 
the interpretation is only implicit and depends strongly on the particular programs 
used to analyze it. Ultimately, such uncurated data is guaranteed to be lost. We 

2 http://research.microsoft.com/en-us/projects/mylifebits 
3 www.ska.gov.au 
4 http://public.web.cern.ch/public/en/LHC/LHC-en.html 
5 http://pan-starrs.ifa.hawaii.edu/public
6 http://genomics.xprize.org 
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must think carefully about which data should be able to live forever and what ad-
ditional metadata should be captured to make this feasible.

Data analysis covers a whole range of activities throughout the workflow pipe-
line, including the use of databases (versus a collection of flat files that a database 
can access), analysis and modeling, and then data visualization. Jim Gray’s recipe 
for designing a database for a given discipline is that it must be able to answer the 
key 20 questions that the scientist wants to ask of it. Much of science now uses data-
bases only to hold various aspects of the data rather than as the location of the data 
itself. This is because the time needed to scan all the data makes analysis infeasible. 
A decade ago, rereading the data was just barely feasible. In 2010, disks are 1,000 
times larger, yet disc record access time has improved by only a factor of two.

digiTal libraries For daTa and documenTs: JusT like modern documenT libraries 

Scientific communication, including peer review, is also undergoing fundamental 
changes. Public digital libraries are taking over the role of holding publications 
from conventional libraries—because of the expense, the need for timeliness, and 
the need to keep experimental data and documents about the data together.

At the time of writing, digital data libraries are still in a formative stage, with 
various sizes, shapes, and charters. Of course, NCAR is one of the oldest sites for 
the modeling, collection, and curation of Earth science data. The San Diego Su-
percomputer Center (SDSC) at the University of California, San Diego, which is 
normally associated with supplying computational power to the scientific commu-
nity, was one of the earliest organizations to recognize the need to add data to 
its mission. SDSC established its Data Central site,7 which holds 27 PB of data in  
more than 100 specific databases (e.g., for bioinformatics and water resources). In 
2009, it set aside 400 terabytes (TB) of disk space for both public and private data-
bases and data collections that serve a wide range of scientific institutions, includ-
ing laboratories, libraries, and museums. 

The Australian National Data Service8 (ANDS) has begun offering services  
starting with the Register My Data service, a “card catalog” that registers the  
identity, structure, name, and location (IP address) of all the various databases,  
including those coming from individuals. The mere act of registering goes a long 
way toward organizing long-term storage. The purpose of ANDS is to influence 
national policy on data management and to inform best practices for the curation 

7 http://datacentral.sdsc.edu/index.html  
8 www.ands.org.au
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of data, thereby transforming the disparate collections of research data into a co-
hesive collection of research resources. In the UK, the Joint Information Systems 
Committee (JISC) has funded the establishment of a Digital Curation Centre9 to 
explore these issues. Over time, one might expect that many such datacenters will 
emerge. The National Science Foundation’s Directorate for Computer and Infor-
mation Science and Engineering recently issued a call for proposals for long-term 
grants to researchers in data-intensive computing and long-term archiving. 

In the articles in this book, the reader is invited to consider the many opportuni-
ties and challenges for data-intensive science, including interdisciplinary coopera-
tion and training, interorganizational data sharing for “scientific data mashups,” 
the establishment of new processes and pipelines, and a research agenda to exploit 
the opportunities as well as stay ahead of the data deluge. These challenges will  
require major capital and operational expenditure. The dream of establishing a 
“sensors everywhere” data infrastructure to support new modes of scientific re-
search will require massive cooperation among funding agencies, scientists, and 
engineers. This dream must be actively encouraged and funded. 

REFERENCES

 [1] National Science Board, “Long-Lived Digital Data Collections: Enabling Research and Education 
in the 21st Century,” Technical Report NSB-05-40, National Science Foundation, September 
2005, www.nsf.gov/pubs/2005/nsb0540/nsb0540.pdf.

 [2] Talk given by Jim Gray to the NRC-CSTB in Mountain View, CA, on January 11, 2007,  
http://research.microsoft.com/en-us/um/people/gray/JimGrayTalks.htm. (Edited transcript  
also in this volume.)

9 www.dcc.ac.uk
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Jim Gray on eScience:  
A Transformed Scientific Method

e have to do better at producing tools to support the whole re-
search cycle—from data capture and data curation to data analysis 
and data visualization. Today, the tools for capturing data both at 
the mega-scale and at the milli-scale are just dreadful. After you 

have captured the data, you need to curate it before you can start doing any kind of 
data analysis, and we lack good tools for both data curation and data analysis. Then 
comes the publication of the results of your research, and the published literature 
is just the tip of the data iceberg. By this I mean that people collect a lot of data and 
then reduce this down to some number of column inches in Science or Nature—or 
10 pages if it is a computer science person writing. So what I mean by data iceberg 
is that there is a lot of data that is collected but not curated or published in any 
systematic way. There are some exceptions, and I think that these cases are a good 
place for us to look for best practices. I will talk about how the whole process of 
peer review has got to change and the way in which I think it is changing and what 
CSTB can do to help all of us get access to our research. 

w

1 National Research Council, http://sites.nationalacademies.org/NRC/index.htm; Computer Science and Telecom-
munications Board, http://sites.nationalacademies.org/cstb/index.htm.
2 This presentation is, poignantly, the last one posted to Jim’s Web page at Microsoft Research before he went missing 
at sea on January 28, 2007—http://research.microsoft.com/en-us/um/people/gray/talks/NRC-CSTB_eScience.ppt. 

EDITED BY Tony Hey, STewarT TanSley, and KriSTin Tolle | Microsoft Research

Based on the transcript of a talk given by Jim Gray  
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escience: WhaT is iT?

eScience is where “IT meets scientists.” Researchers are using many different meth-
ods to collect or generate data—from sensors and CCDs to supercomputers and 
particle colliders. When the data finally shows up in your computer, what do 
you do with all this information that is now in your digital shoebox? People are 
continually seeking me out and saying, “Help! I’ve got all this data. What am I 
supposed to do with it? My Excel spreadsheets are getting out of hand!” So what 
comes next? What happens when you have 10,000 Excel spreadsheets, each with 
50 workbooks in them? Okay, so I have been systematically naming them, but now 
what do I do? 

science Paradigms

I show this slide [Figure 1] every time I talk. I think it is fair to say that this insight 
dawned on me in a CSTB study of computing futures. We said, “Look, computa-
tional science is a third leg.” Originally, there was just experimental science, and 
then there was theoretical science, with Kepler’s Laws, Newton’s Laws of Motion, 
Maxwell’s equations, and so on. Then, for many problems, the theoretical mod-
els grew too complicated to solve analytically, and people had to start simulating. 
These simulations have carried us through much of the last half of the last millen-
nium. At this point, these simulations are generating a whole lot of data, along with 
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a huge increase in data from the experimental sciences. People now do not actually 
look through telescopes. Instead, they are “looking” through large-scale, complex 
instruments which relay data to datacenters, and only then do they look at the in-
formation on their computers.

The world of science has changed, and there is no question about this. The new 
model is for the data to be captured by instruments or generated by simulations 
before being processed by software and for the resulting information or knowledge 
to be stored in computers. Scientists only get to look at their data fairly late in this 
pipeline. The techniques and technologies for such data-intensive science are so 
different that it is worth distinguishing data-intensive science from computational 
science as a new, fourth paradigm for scientific exploration [1].

X-inFo and comP-X

We are seeing the evolution of two branches of every discipline, as shown in the 
next slide [Figure 2]. If you look at ecology, there is now both computational ecol-
ogy, which is to do with simulating ecologies, and eco-informatics, which is to do 
with collecting and analyzing ecological information. Similarly, there is bioinfor-
matics, which collects and analyzes information from many different experiments, 
and there is computational biology, which simulates how biological systems work 
and the metabolic pathways or the behavior of a cell or the way a protein is built. 

FIGURE 2
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This is similar to Jeannette Wing’s idea of “computational thinking,” in which com-
puter science techniques and technologies are applied to different disciplines [2]. 

The goal for many scientists is to codify their information so that they can  
exchange it with other scientists. Why do they need to codify their information? 
Because if I put some information in my computer, the only way you are going to be 
able to understand that information is if your program can understand the infor-
mation. This means that the information has to be represented in an algorithmic 
way. In order to do this, you need a standard representation for what a gene is or 
what a galaxy is or what a temperature measurement is.

eXPerimenTal budgeTs are ¼ To ½ soFTWare

I have been hanging out with astronomers for about the last 10 years, and I get to 
go to some of their base stations. One of the stunning things for me is that I look 
at their telescopes and it is just incredible. It is basically 15 to 20 million dollars 
worth of capital equipment, with about 20 to 50 people operating the instrument. 
But then you get to appreciate that there are literally thousands of people writing 
code to deal with the information generated by this instrument and that millions 
of lines of code are needed to analyze all this information. In fact, the software 
cost dominates the capital expenditure! This is true at the Sloan Digital Sky Survey 
(SDSS), and it is going to continue to be true for larger-scale sky surveys, and in fact 
for many large-scale experiments. I am not sure that this dominant software cost 
is true for the particle physics community and their Large Hadron Collider (LHC) 
machine, but it is certainly true for the LHC experiments.

Even in the “small data” sciences, you see people collecting information and 
then having to put a lot more energy into the analysis of the information than they 
have done in getting the information in the first place. The software is typically 
very idiosyncratic since there are very few generic tools that the bench scientist 
has for collecting and analyzing and processing the data. This is something that we 
computer scientists could help fix by building generic tools for the scientists.

I have a list of items for policymakers like CSTB. The first one is basically to 
foster both building tools and supporting them. NSF now has a cyberinfrastructure 
organization, and I do not want to say anything bad about them, but there needs to 
be more than just support for the TeraGrid and high-performance computing. We 
now know how to build Beowulf clusters for cheap high-performance computing. 
But we do not know how to build a true data grid or to build data stores made out 
of cheap “data bricks” to be a place for you to put all your data and then analyze the 

Jim graY oN eSCiENCE
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information. We have actually made fair progress on simulation tools, but not very 
much on data analysis tools.

ProJecT Pyramids and Pyramid Funding

This section is just an observation about the way most science projects seem to work. 
There are a few international projects, then there are more multi-campus projects, 
and then there are lots and lots of single-lab projects. So we basically have this Tier 1,  
Tier 2, Tier 3 facility pyramid, which you see over and over again in many different 
fields. The Tier 1 and Tier 2 projects are generally fairly systematically organized 
and managed, but there are only relatively few such projects. These large projects 
can afford to have both a software and hardware budget, and they allocate teams of 
scientists to write custom software for the experiment. As an example, I have been 
watching the U.S.-Canadian ocean observatory—Project Neptune—allocate some 
30 percent of its budget for cyberinfrastructure [3]. In round numbers, that’s 30 per-
cent of 350 million dollars or something like 100 million dollars! Similarly, the LHC 
experiments have a very large software budget, and this trend towards large software 
budgets is also evident from the earlier BaBar experiment [4, 5]. But if you are a 
bench scientist at the bottom of the pyramid, what are you going to do for a software 
budget? You are basically going to buy MATLAB3 and Excel4 or some similar soft-
ware and make do with such off-the-shelf tools. There is not much else you can do. 

So the giga- and mega-projects are largely driven by the need for some large-
scale resources like supercomputers, telescopes, or other large-scale experimental 
facilities. These facilities are typically used by a significant community of scientists 
and need to be fully funded by agencies such as the National Science Foundation 
or the Department of Energy. Smaller-scale projects can typically get funding from 
a more diverse set of sources, with funding agency support often matched by some 
other organization—which could be the university itself. In the paper that Gordon 
Bell, Alex Szalay, and I wrote for IEEE Computer [6], we observed that Tier 1 facili-
ties like the LHC get funded by an international consortium of agencies but the 
Tier 2 LHC experiments and Tier 3 facilities get funded by researchers who bring 
with them their own sources of funding. So funding agencies need to fully fund the 
Tier 1 giga-projects but then allocate the other half of their funding for cyberinfra-
structure for smaller projects.

3 www.mathworks.com  
4 http://office.microsoft.com/en-us/excel/default.aspx



xxii

laboraTory inFormaTion managemenT sysTems

To summarize what I have been saying about software, what we need are effectively 
“Laboratory Information Management Systems.” Such software systems provide 
a pipeline from the instrument or simulation data into a data archive, and we are 
close to achieving this in a number of example cases I have been working on. Basi-
cally, we get data from a bunch of instruments into a pipeline which calibrates and 
“cleans” the data, including filling in gaps as necessary. Then we “re-grid”5 the in-
formation and eventually put it into a database, which you would like to “publish” 
on the Internet to let people access your information. 

The whole business of going from an instrument to a Web browser involves a 
vast number of skills. Yet what’s going on is actually very simple. We ought to be 
able to create a Beowulf-like package and some templates that would allow people 
who are doing wet-lab experiments to be able to just collect their data, put it into a 
database, and publish it. This could be done by building a few prototypes and docu-
menting them. It will take several years to do this, but it will have a big impact on 
the way science is done.

As I have said, such software pipelines are called Laboratory Information Man-
agement Systems, or LIMS. Parenthetically, commercial systems exist, and you can 
buy a LIMS system off the shelf. The problem is that they are really geared towards 
people who are fairly rich and are in an industrial setting. They are often also fairly 
specific to one or another task for a particular community—such as taking data 
from a sequencing machine or mass spectrometer, running it through the system, 
and getting results out the other side. 

inFormaTion managemenT and daTa analysis

So here is a typical situation. People are collecting data either from instruments 
or sensors, or from running simulations. Pretty soon they end up with millions of 
files, and there is no easy way to manage or analyze their data. I have been going 
door to door and watching what the scientists are doing. Generally, they are do-
ing one of two things—they are either looking for needles in haystacks or looking 
for the haystacks themselves. The needle-in-the-haystack queries are actually very 
easy—you are looking for specific anomalies in the data, and you usually have some 
idea of what type of signal you are looking for. The particle physicists are looking 

5 This means to “regularize” the organization of the data to one data variable per row, analogous to relational 
database normalization.
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for the Higgs particle at the LHC, and they have a good idea of how the decay of 
such a heavy particle will look like in their detectors. Grids of shared clusters of 
computers are great for such needle-in-a-haystack queries, but such grid computers 
are lousy at trend analysis, statistical clustering, and discovering global patterns in 
the data. 

We actually need much better algorithms for clustering and for what is essen-
tially data mining. Unfortunately, clustering algorithms are not order N or N log N 
but are typically cubic in N, so that when N grows too large, this method does not 
work. So we are being forced to invent new algorithms, and you have to live with 
only approximate answers. For example, using the approximate median turns out 
to be amazingly good. And who would have guessed? Not me! 

Much of the statistical analysis deals with creating uniform samples, perform-
ing some data filtering, incorporating or comparing some Monte Carlo simulations, 
and so on, which all generates a large bunch of files. And the situation with these 
files is that each file just contains a bundle of bytes. If I give you this file, you have 
to work hard to figure out what the data in this file means. It is therefore really 
important that the files be self-describing. When people use the word database, 
fundamentally what they are saying is that the data should be self-describing and 
it should have a schema. That’s really all the word database means. So if I give you 
a particular collection of information, you can look at this information and say, “I 
want all the genes that have this property” or “I want all of the stars that have this 
property” or “I want all of the galaxies that have this property.” But if I give you just 
a bunch of files, you can’t even use the concept of a galaxy and you have to hunt 
around and figure out for yourself what is the effective schema for the data in that 
file. If you have a schema for things, you can index the data, you can aggregate the 
data, you can use parallel search on the data, you can have ad hoc queries on the 
data, and it is much easier to build some generic visualization tools.

In fairness, I should say that the science community has invented a bunch of 
formats that qualify in my mind as database formats. HDF6 (Hierarchical Data For-
mat) is one such format, and NetCDF7 (Network Common Data Form) is another. 
These formats are used for data interchange and carry the data schema with them 
as they go. But the whole discipline of science needs much better tools than HDF 
and NetCDF for making data self-defining.

6 www.hdfgroup.org
7 www.unidata.ucar.edu/software/netcdf 
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daTa delivery: hiTTing a Wall

The other key issue is that as the datasets get larger, it is no longer possible to just 
FTP or grep them. A petabyte of data is very hard to FTP! So at some point, you 
need indices and you need parallel data access, and this is where databases can 
help you. For data analysis, one possibility is to move the data to you, but the other 
possibility is to move your query to the data. You can either move your questions 
or the data. Often it turns out to be more efficient to move the questions than to 
move the data.

The need For daTa Tools: leT 100 FloWers bloom

The suggestion that I have been making is that we now have terrible data man-
agement tools for most of the science disciplines. Commercial organizations like  
Walmart can afford to build their own data management software, but in science 
we do not have that luxury. At present, we have hardly any data visualization and 
analysis tools. Some research communities use MATLAB, for example, but the 
funding agencies in the U.S. and elsewhere need to do a lot more to foster the build-
ing of tools to make scientists more productive. When you go and look at what sci-
entists are doing, day in and day out, in terms of data analysis, it is truly dreadful. 
And I suspect that many of you are in the same state that I am in where essentially 
the only tools I have at my disposal are MATLAB and Excel!

We do have some nice tools like Beowulf8 clusters, which allow us to get cost- 
effective high-performance computing by combining lots of inexpensive computers.
We have some software called Condor9 that allows you to harvest processing cycles 
from departmental machines. Similarly, we have the BOINC10 (Berkeley Open In-
frastructure for Network Computing) software that enables the harvesting of PC 
cycles as in the SETI@Home project. And we have a few commercial products like 
MATLAB. All these tools grew out of the research community, and I cannot figure 
out why these particular tools were successful. 

We also have Linux and FreeBSD Unix. FreeBSD predated Linux, but some-
how Linux took off and FreeBSD did not. I think that these things have a lot to 
do with the community, the personalities, and the timing. So my suggestion is 
that we should just have lots of things. We have commercial tools like LabVIEW,11  

8 www.beowulf.org 
9 www.cs.wisc.edu/condor
10 http://boinc.berkeley.edu
11 www.ni.com/labview 
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for example, but we should create several other such systems. And we just need 
to hope that some of these take off. It should not be very expensive to seed a large 
number of projects. 

The coming revoluTion in scholarly communicaTion

I have reached the end of the first part of my talk: it was about the need for tools 
to help scientists capture their data, curate it, analyze it, and then visualize it. The 
second part of the talk is about scholarly communication. About three years ago, 
Congress passed a law that recommended that if you take NIH (National Institutes 
of Health) funding for your research, you should deposit your research reports with 
the National Library of Medicine (NLM) so that the full text of your papers should 
be in the public domain. Voluntary compliance with this law has been only 3 per-
cent, so things are about to change. We are now likely to see all of the publicly fund-
ed science literature forced online by the funding agencies. There is currently a bill 
sponsored by Senators Cornyn and Lieberman that will make it compulsory for 
NIH grant recipients to put their research papers into the NLM PubMed Central 
repository.12 In the UK, the Wellcome Trust has implemented a similar mandate 
for recipients of its research funding and has created a mirror of the NLM PubMed 
Central repository. 

But the Internet can do more than just make available the full text of research 
papers. In principle, it can unify all the scientific data with all the literature to  
create a world in which the data and the literature interoperate with each other  
[Figure 3 on the next page]. You can be reading a paper by someone and then go off  
and look at their original data. You can even redo their analysis. Or you can be 
looking at some data and then go off and find out all the literature about this data. 
Such a capability will increase the “information velocity” of the sciences and will 
improve the scientific productivity of researchers. And I believe that this would be 
a very good development!

Take the example of somebody who is working for the National Institutes of 
Health—which is the case being discussed here—who produces a report. Suppose 
he discovers something about disease X. You go to your doctor and you say, “Doc, 
I’m not feeling very well.” And he says, “Andy, we’re going to give you a bunch 
of tests.” And they give you a bunch of tests. He calls you the next day and says, 

12 See Peter Suber’s Open Access newsletter for a summary of the current situation: www.earlham.edu/~peters/fos/
newsletter/01-02-08.htm.

www.earlham.edu/~peters/fos/newsletter/01-02-08.htm
www.earlham.edu/~peters/fos/newsletter/01-02-08.htm
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“There’s nothing wrong with you. Take two aspirins, and take some vacation.” You 
go back a year later and do the same thing. Three years later, he calls you up and 
says, “Andy, you have X! We figured it out!” You say, “What’s X?” He says, “I have 
no idea, it’s a rare disease, but there’s this guy in New York who knows all about it.” 
So you go to Google13 and type in all your symptoms. Page 1 of the results, up comes 
X. You click on it and it takes you to PubMed Central and to the abstract “All About 
X.” You click on that, and it takes you to the New England Journal of Medicine, which 
says, “Please give us $100 and we’ll let you read about X.” You look at it and see that 
the guy works for the National Institutes of Health. Your tax dollars at work. So 
Lieberman14 and others have said, “This sucks. Scientific information is now peer 
reviewed and put into the public domain—but only in the sense that anybody can 
read it if they’ll pay. What’s that about? We’ve already paid for it.”

The scholarly publishers offer a service of organizing the peer review, printing 
the journal, and distributing the information to libraries. But the Internet is our 
distributor now and is more or less free. This is all linked to the thought process 
that society is going through about where intellectual property begins and ends. 
The scientific literature, and peer reviewed literature in particular, is probably one 
of the places where it ends. If you want to find out about X, you will probably be 

FIGURE 3

13 Or, as Jim might have suggested today, Bing. 
14 The Federal Research Public Access Act of 2006 (Cornyn-Lieberman).
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able to find out that peach pits are a great treatment for X. But this is not from the 
peer reviewed literature and is there just because there’s a guy out there who wants 
to sell peach pits to you to cure X. So the people who have been pioneering this 
movement towards open access are primarily the folks in healthcare because the 
good healthcare information is locked up and the bad healthcare information is on 
the Internet.

The neW digiTal library

How does the new library work? Well, it’s free because it’s pretty easy to put a 
page or an article on the Internet. Each of you could afford to publish in PubMed  
Central. It would just cost you a few thousand dollars for the computer—but how 
much traffic you would have I don’t know! But curation is not cheap. Getting the 
stuff into the computer, getting it cross-indexed, all that sort of stuff, is costing the 
National Library of Medicine about $100 to curate each article that shows up. If 
it takes in a million articles a year, which is approximately what it expects to get, 
it’s going to be $100 million a year just to curate the stuff. This is why we need to 
automate the whole curation process.

What is now going on is that PubMed Central, which is the digital part of the  
National Library of Medicine, has made itself portable. There are versions of 
PubMed Central running in the UK, in Italy, in South Africa, in Japan, and in 
China. The one in the UK just came online last week. I guess you can appreciate, 
for example, that the French don’t want their National Library of Medicine to be 
in Bethesda, Maryland, or in English. And the English don’t want the text to be in 
American, so the UK version will probably use UK spellings for things in its Web 
interface. But fundamentally, you can stick a document in any of these archives and 
it will get replicated to all the other archives. It’s fairly cheap to run one of these 
archives, but the big challenges are how you do curation and peer review.

overlay Journals

Here’s how I think it might work. This is based on the concept of overlay journals. 
The idea is that you have data archives and you have literature archives. The articles 
get deposited in the literature archives, and the data goes into the data archives. 
Then there is a journal management system that somebody builds that allows us, 
as a group, to form a journal on X. We let people submit articles to our journal by 
depositing them in the archive. We do peer review on them and for the ones we 
like, we make a title page and say, “These are the articles we like” and put it into 
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the archive as well. Now, a search engine comes along and cranks up the page rank 
on all of those articles as being good because they are now referenced by this very 
significant front page. These articles, of course, can also point back to the data. 
Then there will be a collaboration system that comes along that allows people to 
annotate and comment on the journal articles. The comments are not stored in the 
peer reviewed archive but on the side because they have not been peer reviewed—
though they might be moderated. 

The National Library of Medicine is going to do all this for the biomedical com-
munity, but it’s not happening in other scientific communities. For you as members 
of the CSTB, the CS community could help make this happen by providing appro-
priate tools for the other scientific disciplines.

There is some software we have created at Microsoft Research called Conference 
Management Tool (CMT). We have run about 300 conferences with this, and the 
CMT service makes it trivial for you to create a conference. The tool supports the 
whole workflow of forming a program committee, publishing a Web site, accept-
ing manuscripts, declaring conflicts of interest and recusing yourself, doing the 
reviews, deciding which papers to accept, forming the conference program, notify-
ing the authors, doing the revisions, and so on. We are now working on providing a 
button to deposit the articles into arXiv.org or PubMed Central and pushing in the 
title page as well. This now allows us to capture workshops and conferences very 
easily. But it will also allow you to run an online journal. This mechanism would 
make it very easy to create overlay journals.

Somebody asked earlier if this would be hard on scholarly publishers. And the 
answer is yes. But isn’t this also going to be hard for the IEEE and the ACM? The 
answer is that the professional societies are terrified that if they don’t have any  
paper to send you, you won’t join them. I think that they are going to have to deal 
with this somehow because I think open access is going to happen. Looking around 
the room, I see that most of us are old and not Generation Xers. Most of us join 
these organizations because we just think it’s part of being a professional in that 
field. The trouble is that Generation Xers don’t join organizations.

WhaT haPPens To Peer revieW?

This is not a question that has concerned you, but many people say, “Why do we 
need peer review at all? Why don’t we just have a wiki?” And I think the answer 
is that peer review is different. It’s very structured, it’s moderated, and there is a 
degree of confidentiality about what people say. The wiki is much more egalitarian. 

Jim graY oN eSCiENCE
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I think wikis make good sense for collecting comments about the literature after 
the paper has been published. One needs some structure like CMT provides for the 
peer review process. 

Publishing daTa

I had better move on and go very quickly through publishing data. I’ve talked about 
publishing literature, but if the answer is 42, what are the units? You put some 
data in a file up on the Internet, but this brings us back to the problem of files. The 
important record to show your work in context is called the data provenance. How 
did you get the number 42?

Here is a thought experiment. You’ve done some science, and you want to pub-
lish it. How do you publish it so that others can read it and reproduce your results 
in a hundred years’ time? Mendel did this, and Darwin did this, but barely. We are 
now further behind than Mendel and Darwin in terms of techniques to do this. It’s 
a mess, and we’ve got to work on this problem.

daTa, inFormaTion, and knoWledge: onTologies and semanTics

We are trying to objectify knowledge. We can help with basic things like units, 
and what is a measurement, who took the measurement, and when the measure-
ment was taken. These are generic things and apply to all fields. Here [at Microsoft 
Research] we do computer science. What do we mean by planet, star, and galaxy? 
That’s astronomy. What’s the gene? That’s biology. So what are the objects, what 
are the attributes, and what are the methods in the object-oriented sense on these 
objects? And note, parenthetically, that the Internet is really turning into an object-
oriented system where people fetch objects. In the business world, they’re objectify-
ing what a customer is, what an invoice is, and so on. In the sciences, for example, 
we need similarly to objectify what a gene is—which is what GenBank15 does.

And here we need a warning that to go further, you are going to bump into the  
O word for “ontology,” the S word for “schema,” and “controlled vocabularies.” That 
is to say, in going down this path, you’re going to start talking about semantics, 
which is to say, “What do things mean?” And of course everybody has a different 
opinion of what things mean, so the conversations can be endless.

The best example of all of this is Entrez,16 the Life Sciences Search Engine,  

15 www.ncbi.nlm.nih.gov/Genbank 
16 www.ncbi.nlm.nih.gov/Entrez
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created by the National Center for Biotechnology Information for the NLM. Entrez 
allows searches across PubMed Central, which is the literature, but they also have 
phylogeny data, they have nucleotide sequences, they have protein sequences and 
their 3-D structures, and then they have GenBank. It is really a very impressive  
system. They have also built the PubChem database and a lot of other things. This 
is all an example of the data and the literature interoperating. You can be looking at 
an article, go to the gene data, follow the gene to the disease, go back to the litera-
ture, and so on. It is really quite stunning!

So in this world, we have traditionally had authors, publishers, curators, and con-
sumers. In the new world, individual scientists now work in collaborations, and jour-
nals are turning into Web sites for data and other details of the experiments. Curators 
now look after large digital archives, and about the only thing the same is the indi-
vidual scientist. It is really a pretty fundamental change in the way we do science.

One problem is that all projects end at a certain point and it is not clear what 
then happens to the data. There is data at all scales. There are anthropologists out 
collecting information and putting it into their notebooks. And then there are the 
particle physicists at the LHC. Most of the bytes are at the high end, but most of the 
datasets are at the low end. We are now beginning to see mashups where people 
take datasets from various places and glue them together to make a third data-
set. So in the same sense that we need archives for journal publications, we need  
archives for the data.

So this is my last recommendation to the CSTB: foster digital data libraries. 
Frankly, the NSF Digital Library effort was all about metadata for libraries and not 
about actual digital libraries. We should build actual digital libraries both for data 
and for the literature.

summary

I wanted to point out that almost everything about science is changing because 
of the impact of information technology. Experimental, theoretical, and computa-
tional science are all being affected by the data deluge, and a fourth, “data-intensive” 
science paradigm is emerging. The goal is to have a world in which all of the science 
literature is online, all of the science data is online, and they interoperate with each 
other. Lots of new tools are needed to make this happen.
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ediTors’ noTe

The full transcript and PowerPoint slides from Jim’s talk may be found at the 
Fourth Paradigm Web site.17 The questions and answers during the talk have been 
extracted from this text and are available on the Web site. (Note that the question-
ers have not been identified by name.) The text presented here includes minor edits 
to improve readability, as well as our added footnotes and references, but we believe 
that it remains faithful to Jim’s presentation. 
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Change is inevitable—the Universe expands, nature adapts 
and evolves, and so must the scientific tools and technol-
ogies that we employ to feed our unrelenting quest for 
greater knowledge in space, Earth, and environmental 

sciences. The opportunities and challenges are many. New com-
puting technologies such as cloud computing and multicore proces-
sors cannot provide the entire solution in their generic forms. But 
effective and timely application of such technologies can help us 
significantly advance our understanding of our world, including its 
environmental challenges and how we might address them. 

 With science moving toward being computational and data 
based, key technology challenges include the need to better cap-
ture, analyze, model, and visualize scientific information. The ul-
timate goal is to aid scientists, researchers, policymakers, and the 
general public in making informed decisions. As society demands 
action and responsiveness to growing environmental issues, new 
types of applications grounded in scientific research will need 
to move from raw discovery and eliciting basic data that leads to 
knowledge to informing practical decisions. Active issues such as 
climate change will not wait until scientists have all the data to fill 
their knowledge gaps.

 As evidenced by the articles in this part of the book, scientists 
are indeed actively pursuing scientific understanding through the 

DAN FAY |  Microsoft Research
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use of new computing technologies. Szalay and Blakeley describe Jim Gray’s infor-
mal rules for data-centric development and how they serve as a blueprint for making 
large-scale datasets available through the use of databases, leveraging the built-in 
data management as well as the parallel processing inherent in SQL servers.

In order to facilitate informed decisions based on reliable scientific evidence, 
Dozier and Gail explore how the applied use of technology and current scientific 
knowledge is key to providing tools to policy and decision makers. Hunt, Baldocchi, 
and van Ingen describe the changes under way in ecological science in moving 
from “science in the small” to large collaborations based on synthesis of data. These 
aggregated datasets expose the need for collaborative tools in the cloud as well as 
easy-to-use visualization and analysis tools. Delaney and Barga then provide com-
pelling insights into the need for real-time monitoring of the complex dynamics in 
the sea by creating an interactive ocean laboratory. This novel cyberinfrastructure 
will enable new discoveries and insights through improved ocean models. 

The need for novel scientific browsing technologies is highlighted by Goodman 
and Wong. To advance the linkage across existing resources, astronomers can use 
a new class of visualization tools, such as the WorldWide Telescope (WWT). This 
new class of tool offers access to data and information not only to professional sci-
entists but also the general public, both for education and possibly to enable new 
discoveries by anyone with access to the Internet. Finally, Lehning et al. provide 
details about the use of densely deployed real-time sensors combined with visu-
alization for increased understanding of environmental dynamics—like a virtual 
telescope looking back at the Earth. These applications illustrate how scientists 
and technologists have the opportunity to embrace and involve citizen scientists 
in their efforts.

In Part 1 and throughout the book, we see new sensors and infrastructures  
enabling real-time access to potentially enormous quantities of data, but with ex-
perimental repeatability through the use of workflows. Service-oriented architec-
tures are helping to mitigate the transition to new underlying technologies and 
enable the linkage of data and resources. This rapidly evolving process is the only 
mechanism we have to deal with the data deluge arising from our instruments. 

The question before us is how the world’s intellectual and technological resourc-
es can be best orchestrated to authoritatively guide our responses to current and 
future societal challenges. The articles that follow provide some great answers. 



Gray’s Laws:  
Database-centric  

Computing in Science

he explosion in scientific data  has created a major chal-
lenge for cutting-edge scientific projects. With datasets 
growing beyond a few tens of terabytes, scientists have 
no off-the-shelf solutions that they can readily use to 

manage and analyze the data [1]. Successful projects to date have 
deployed various combinations of flat files and databases [2]. How-
ever, most of these solutions have been tailored to specific projects 
and would not be easy to generalize or scale to the next generation 
of experiments. Also, today’s computer architectures are increas-
ingly imbalanced; the latency gap between multi-core CPUs and 
mechanical hard disks is growing every year, making the chal-
lenges of data-intensive computing harder to overcome [3]. What 
is needed is a systematic and general approach to these problems 
with an architecture that can scale into the future.

Gray’s Laws

Jim Gray formulated several informal rules—or laws—that codify 
how to approach data engineering challenges related to large-scale 
scientific datasets. The laws are as follows:

1. Scientific computing is becoming increasingly data intensive.
2. The solution is in a “scale-out” architecture.
3. Bring computations to the data, rather than data to the  

computations.
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4. Start the design with the “20 queries.”
5. Go from “working to working.”

It is important to realize that the analysis of observational datasets is severely 
limited by the relatively low I/O performance of most of today’s computing plat-
forms. High-performance numerical simulations are also increasingly feeling the 
“I/O bottleneck.” Once datasets exceed the random access memory (RAM) capac-
ity of the system, locality in a multi-tiered cache no longer helps [4]. Yet very few 
high-end platforms provide a fast enough I/O subsystem. 

High-performance, scalable numerical computation also presents an algorithmic 
challenge. Traditional numerical analysis packages have been designed to operate 
on datasets that fit in RAM. To tackle analyses that are orders of magnitude larger, 
these packages must be redesigned to work in a multi-phase, divide-and-conquer 
manner while maintaining their numerical accuracy. This suggests an approach in 
which a large-scale problem is decomposed into smaller pieces that can be solved in 
RAM, whereas the rest of the dataset resides on disk. This approach is analogous to 
the way in which database algorithms such as sorts or joins work on datasets larger 
than RAM. These challenges are reaching a critical stage.

Buying larger network storage systems and attaching them to clusters of com-
pute nodes will not solve the problem because network/interconnect speeds are 
not growing fast enough to cope with the yearly doubling of the necessary stor-
age. Scale-out solutions advocate simple building blocks in which the data is par-
titioned among nodes with locally attached storage [5]. The smaller and simpler 
these blocks are, the better the balance between CPUs, disks, and networking can 
become. Gray envisaged simple “CyberBricks” where each disk drive has its own 
CPU and networking [6]. While the number of nodes on such a system would be 
much larger than in a traditional “scale-up” architecture, the simplicity and lower 
cost of each node and the aggregate performance would more than make up for the 
added complexity. With the emergence of solid-state disks and low-power mother-
boards, we are on the verge of being able to build such systems [7].

Database-centric computinG

Most scientific data analyses are performed in hierarchical steps. During the first 
pass, a subset of the data is extracted by either filtering on certain attributes (e.g., 
removing erroneous data) or extracting a vertical subset of the columns. In the next 
step, data are usually transformed or aggregated in some way. Of course, in more 
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complex datasets, these patterns are often accompanied by complex joins among 
multiple datasets, such as external calibrations or extracting and analyzing differ-
ent parts of a gene sequence [8]. As datasets grow ever larger, the most efficient way 
to perform most of these computations is clearly to move the analysis functions as 
close to the data as possible. It also turns out that most of these patterns are easily 
expressed by a set-oriented, declarative language whose execution can benefit enor-
mously from cost-based query optimization, automatic parallelism, and indexes. 

Gray and his collaborators have shown on several projects that existing rela-
tional database technologies can be successfully applied in this context [9]. There 
are also seamless ways to integrate complex class libraries written in procedural 
languages as an extension of the underlying database engine [10, 11]. 

MapReduce has become a popular distributed data analysis and computing para-
digm in recent years [12]. The principles behind this paradigm resemble the distrib-
uted grouping and aggregation capabilities that have existed in parallel relational 
database systems for some time. New-generation parallel database systems such as 
Teradata, Aster Data, and Vertica have rebranded these capabilities as “MapReduce 
in the database.” New benchmarks comparing the merits of each approach have 
been developed [13].

connectinG to the scientists

One of the most challenging problems in designing scientific databases is to estab-
lish effective communication between the builder of the database and the domain 
scientists interested in the analysis. Most projects make the mistake of trying to be 
“everything for everyone.” It is clear that that some features are more important 
than others and that various design trade-offs are necessary, resulting in perfor-
mance trade-offs. 

Jim Gray came up with the heuristic rule of “20 queries.” On each project he 
was involved with, he asked for the 20 most important questions the researchers 
wanted the data system to answer. He said that five questions are not enough to 
see a broader pattern, and a hundred questions would result in a shortage of focus. 
Since most selections involving human choices follow a “long tail,” or so-called 1/f 
distribution, it is clear that the relative information in the queries ranked by impor-
tance is logarithmic, so the gain realized by going from approximately 20 (24.5) to 
100 (26.5) is quite modest [14].

The “20 queries” rule is a moniker for a design step that engages the domain 
scientist and the database engineer in a conversation that helps bridge the semantic 
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gap between nouns and verbs used in the scientific domain and the entities and 
relationships stored in the database. Queries define the precise set of questions 
in terms of entities and relationships that domain scientists expect to pose to the 
database. At the end of a full iteration of this exercise, the domain scientist and the 
database speak a common language.

This approach has been very successful in keeping the design process focused 
on the most important features the system must support, while at the same time 
helping the domain scientists understand the database system trade-offs, thereby 
limiting “feature creep.”

Another design law is to move from working version to working version. Gray was 
very much aware of how quickly data-driven computing architecture changes, espe-
cially if it involves distributed data. New distributed computing paradigms come and 
go every other year, making it extremely difficult to engage in a multi-year top-down 
design and implementation cycle. By the time such a project is completed, the start-
ing premises have become obsolete. If we build a system that starts working only if 
every one of its components functions correctly, we will never finish.

The only way to survive and make progress in such a world is to build modular 
systems in which individual components can be replaced as the underlying tech-
nologies evolve. Today’s service-oriented architectures are good examples of this. 
Web services have already gone through several major evolutionary stages, and the 
end is nowhere in sight.

From terascaLe to petascaLe scientiFic Databases

By using Microsoft SQL Server, we have successfully tackled several projects 
on a scale from a few terabytes (TB) to tens of terabytes [15-17]. Implementing  
databases that will soon exceed 100 TB also looks rather straightforward [18], but 
it is not entirely clear how science will cross the petascale barrier. As databases 
become larger and larger, they will inevitably start using an increasingly scaled-
out architecture. Data will be heavily partitioned, making distributed, non-local  
queries and distributed joins increasingly difficult. 

For most of the petascale problems today, a simple data-crawling strategy 
over massively scaled-out, share-nothing data partitions has been adequate  
(MapReduce, Hadoop, etc.). But it is also clear that this layout is very suboptimal 
when a good index might provide better performance by orders of magnitude. Joins 
between tables of very different cardinalities have been notoriously difficult to use 
with these crawlers. 
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Databases have many things to offer in terms of more efficient plans. We also need 
to rethink the utility of expecting a monolithic result set. One can imagine crawlers 
over heavily partitioned databases implementing a construct that can provide results 
one bucket at a time, resulting in easier checkpointing and recovery in the middle of 
an extensive query. This approach is also useful for aggregate functions with a clause 
that would stop when the result is estimated to be within, for example, 99% accu-
racy. These simple enhancements would go a long way toward sidestepping huge 
monolithic queries—breaking them up into smaller, more manageable ones.

Cloud computing is another recently emerging paradigm. It offers obvious ad-
vantages, such as co-locating data with computations and an economy of scale in 
hosting the services. While these platforms obviously perform very well for their 
current intended use in search engines or elastic hosting of commercial Web sites, 
their role in scientific computing is yet to be clarified. In some scientific analysis 
scenarios, the data needs to be close to the experiment. In other cases, the nodes 
need to be tightly integrated with a very low latency. In yet other cases, very high 
I/O bandwidth is required. Each of these analysis strategies would be suboptimal 
in current virtualization environments. Certainly, more specialized data clouds are 
bound to emerge soon. In the next few years, we will see if scientific computing 
moves from universities to commercial service providers or whether it is necessary 
for the largest scientific data stores to be aggregated into one.

concLusions

Experimental science is generating vast volumes of data. The Pan-STARRS project 
will capture 2.5 petabytes (PB) of data each year when in production [18]. The 
Large Hadron Collider will generate 50 to 100 PB of data each year, with about  
20 PB of that data stored and processed on a worldwide federation of national grids 
linking 100,000 CPUs [19]. Yet generic data-centric solutions to cope with this vol-
ume of data and corresponding analyses are not readily available [20].

Scientists and scientific institutions need a template and collection of best prac-
tices that lead to balanced hardware architectures and corresponding software to 
deal with these volumes of data. This would reduce the need to reinvent the wheel. 
Database features such as declarative, set-oriented languages and automatic paral-
lelism, which have been successful in building large-scale scientific applications, 
are clearly needed.

We believe that the current wave of databases can manage at least another order 
of magnitude in scale. So for the time being, we can continue to work. However,  
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it is time to start thinking about the next wave. Scientific databases are an early 
predictor of requirements that will be needed by conventional corporate applica-
tions; therefore, investments in these applications will lead to technologies that 
will be broadly applicable in a few years. Today’s science challenges are good  
representatives of the data management challenges for the 21st century. Gray’s Laws 
represent an excellent set of guiding principles for designing the data-intensive  
systems of the future.
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he science of earth and environment has matured 
through two major phases and is entering a third. In the 
first phase, which ended two decades ago, Earth and en-
vironmental science was largely discipline oriented and 

focused on developing knowledge in geology, atmospheric chem-
istry, ecosystems, and other aspects of the Earth system. In the 
1980s, the scientific community recognized the close coupling of 
these disciplines and began to study them as interacting elements 
of a single system. During this second phase, the paradigm of Earth 
system science emerged. With it came the ability to understand 
complex, system-oriented phenomena such as climate change, 
which links concepts from atmospheric sciences, biology, and hu-
man behavior. Essential to the study of Earth’s interacting systems 
was the ability to acquire, manage, and make available data from 
satellite observations; in parallel, new models were developed to 
express our growing understanding of the complex processes in 
the dynamic Earth system [1].

In the emerging third phase, knowledge developed primarily 
for the purpose of scientific understanding is being complement-
ed by knowledge created to target practical decisions and action. 
This new knowledge endeavor can be referred to as the science of  
environmental applications. Climate change provides the most 
prominent example of the importance of this shift. Until now, the 
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climate science community has focused on critical questions involving basic knowl-
edge, from measuring the amount of change to determining the causes. With the 
basic understanding now well established, the demand for climate applications 
knowledge is emerging. How do we quantify and monitor total forest biomass so 
that carbon markets can characterize supply? What are the implications of regional 
shifts in water resources for demographic trends, agricultural output, and energy 
production? To what extent will seawalls and other adaptations to rising sea level 
impact coasts?

These questions are informed by basic science, but they raise additional issues 
that can be addressed only by a new science discipline focused specifically on ap-
plications—a discipline that integrates physical, biogeochemical, engineering, and 
human processes. Its principal questions reflect a fundamental curiosity about the 
nature of the world we live in, tempered by the awareness that a question’s impor-
tance scales with its relevance to a societal imperative. As Nobel laureate and U.S. 
Secretary of Energy Steven Chu has remarked, “We seek solutions. We don’t seek—
dare I say this?—just scientific papers anymore” [2].

To illustrate the relationships between basic science and applications, consider 
the role of snowmelt runoff in water supplies. Worldwide, 1 billion people depend 
on snow or glacier melt for their water resources [3]. Design and operations of 
water systems have traditionally relied on historical measurements in a station-
ary climate, along with empirical relationships and models. As climates and land 
use change, populations grow and relocate, and our built systems age and decay, 
these empirical methods of managing our water become inaccurate—a conundrum 
characterized as “stationarity is dead” [4]. Snowmelt commonly provides water for 
competing uses: urban and agricultural supply, hydropower, recreation, and eco-
systems. In many areas, both rainfall and snowfall occur, raising the concern that 
a future warmer climate will lead to a greater fraction of precipitation as rain, with 
the water arriving months before agricultural demand peaks and with more rapid 
runoff leading to more floods. In these mixed rain and snow systems, the societal 
need is: How do we sustain flood control and the benefits that water provides to 
humans and ecosystems when changes in the timing and magnitude of runoff are 
likely to render existing infrastructure inadequate?

The solution to the societal need requires a more fundamental, process-based 
understanding of the water cycle. Currently, historical data drive practices and de-
cisions for flood control and water supply systems. Flood operations and reservoir 
flood capacity are predetermined by regulatory orders that are static, regardless 
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of the type of water year, current state of the snowpack, or risk of flood. In many 
years, early snowmelt is not stored because statistically based projections anticipate 
floods that better information might suggest cannot materialize because of the ab-
sence of snow. The more we experience warming, the more frequently this occur-
rence will impact the water supply [5]. The related science challenges are: (1) The 
statistical methods in use do not try to estimate the basin’s water balance, and with 
the current measurement networks even in the U.S., we lack adequate knowledge 
of the amount of snow in the basins; (2) We are unable to partition the input be-
tween rain and snow, or to partition that rain or snow between evapotranspiration 
and runoff; (3) We lack the knowledge to manage the relationship between snow 
cover, forests, and carbon stocks; (4) Runoff forecasts that are not based on physical 
principles relating to snowmelt are often inaccurate; and (5) We do not know what 
incentives and institutional arrangements would lead to better management of the 
watershed for ecosystem services.

Generally, models do not consider these kinds of interactions; hence the need for 
a science of environmental applications. Its core characteristics differentiate it from 
the basic science of Earth and environment:

•	Need driven versus curiosity driven. Basic science is question driven; in con-
trast, the new applications science is guided more by societal needs than scien-
tific curiosity. Rather than seeking answers to questions, it focuses on creating 
the ability to seek courses of action and determine their consequences.

•	Externally constrained. External circumstances often dictate when and how 
applications knowledge is needed. The creation of carbon trading markets will 
not wait until we fully quantify forest carbon content. It will happen on a sched-
ule dictated by policy and economics. Construction and repair of the urban wa-
ter infrastructure will not wait for an understanding of evolving rainfall pat-
terns. Applications science must be prepared to inform actions subject to these 
external drivers, not according to academic schedules based on when and how 
the best knowledge can be obtained.

•	Consequential and recursive. Actions arising from our knowledge of the Earth 
often change the Earth, creating the need for new knowledge about what we 
have changed. For example, the more we knew in the past about locations of fish 
populations, the more the populations were overfished; our original knowledge 
about them became rapidly outdated through our own actions. Applications sci-
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ence seeks to understand not just those aspects of the Earth addressed by a par-
ticular use scenario, but also the consequences and externalities that result from 
that use scenario. A recent example is the shift of agricultural land to corn-for-
ethanol production—an effort to reduce climate change that we now recognize 
as significantly stressing scarce water resources.

•	Useful even when incomplete. As the snowpack example illustrates, actions 
are often needed despite incomplete data or partial knowledge. The difficulty of 
establishing confidence in the quality of our knowledge is particularly discon-
certing given the loss of stationarity associated with climate change. New means 
of making effective use of partial knowledge must be developed, including ro-
bust inference engines and statistical interpretation.

•	Scalable. Basic science knowledge does not always scale to support applications 
needs. The example of carbon trading presents an excellent illustration. Basic 
science tells us how to relate carbon content to measurements of vegetation type 
and density, but it does not give us the tools that scale this to a global inventory. 
New knowledge tools must be built to accurately create and update this inven-
tory through cost-effective remote sensing or other means.

•	Robust. The decision makers who apply applications knowledge typically have 
limited comprehension of how the knowledge was developed and in what situ-
ations it is applicable. To avoid misuse, the knowledge must be characterized 
in highly robust terms. It must be stable over time and insensitive to individual 
interpretations, changing context, and special conditions.

•	Data intensive. Basic science is data intensive in its own right, but data sources 
that support basic science are often insufficient to support applications. Local-
ized impacts with global extent, such as intrusion of invasive species, are often 
difficult for centralized projects with small numbers of researchers to ascer-
tain. New applications-appropriate sources must be identified, and new ways  
of observing (including the use of communities as data gatherers) must be  
developed.

Each of these characteristics implies development of new knowledge types and 
new tools for acquiring that knowledge. The snowpack example illustrates what this 
requirement means for a specific application area. Four elements have recently 
come together that make deployment of a measurement and information system 
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that can support decisions at a scale of a large river basin feasible: (1) accurate, 
sustained satellite estimates of snow-covered area across an entire mountain range; 
(2) reliable, low-cost sensors and telemetry systems for snow and soil moisture;  
(3) social science data that complement natural and engineered systems data to en-
able analysis of human decision making; and (4) cyberinfrastructure advances to 
integrate data and deliver them in near real time.

 For snow-dominated drainage basins, the highest-priority scientific challenge is 
to estimate the spatial distribution and heterogeneity of the snow water equivalent—
i.e., the amount of water that would result if the snow were to melt. Because of wind 
redistribution of snow after it falls, snow on the ground is far more heterogeneous 
than rainfall, with several meters of differences within a 10 to 100 m distance. Het-
erogeneity in snow depth smoothes the daily runoff because of the variability of the 
duration of meltwater in the snowpack [6]; seasonally, it produces quasi-riparian 
zones of increased soil moisture well into the summer. The approach to estimating 
the snow water equivalent involves several tasks using improved data: (1) extensive 
validation of the satellite estimates of snow cover and its reflectivity, as Figure 1 on 
the next page shows; (2) using results from an energy balance reconstruction of 
snow cover to improve interpolation from more extensive ground measurements 
and satellite data [7]; (3) development of innovative ways to characterize hetero-
geneity [8]; and (4) testing the interpolated estimates with a spatially distributed 
runoff model [9]. The measurements would also help clarify the accuracy in pre-
cipitation estimates from regional climate models.

This third phase of Earth and environmental science will evolve over the next 
decade as the scientific community begins to pursue it. Weather science has already 
built substantial capability in applications science; the larger field of Earth science 
will need to learn from and extend those efforts. The need for basic science and 
further discovery will not diminish, but instead will be augmented and extended 
by this new phase. The questions to address are both practically important and 
intellectually captivating. Will our hydrologic forecasting skill decline as changes 
in precipitation diminish the value of statistics obtained from historic patterns? 
Where will the next big climate change issue arise, and what policy actions taken 
today could allow us to anticipate it? 

Equally important is improving how we apply this knowledge in our daily lives. 
The Internet and mobile telephones, with their global reach, provide new ways 
to disseminate information rapidly and widely. Information was available to avoid 
much of the devastation from the Asian tsunami and Hurricane Katrina, but we 
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lacked the tools for rapid decision making and communication of needed actions. 
Applications science is therefore integrative; it couples understanding of physical 
phenomena and research into the ways that people and organizations can use better 
knowledge to make decisions. The public as a whole can also become an important 
contributor to localized Earth observation, augmenting our limited satellite and 
sensor networks through devices as simple as mobile phone cameras. The ability to 
leverage this emerging data-gathering capability will be an important challenge for 
the new phase of environmental science. 

The security and prosperity of nearly 7 billion people depend increasingly on our 
ability to gather and apply information about the world around us. Basic environ-
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FIGURE 1.

An illustration of the type of data that are useful in analyzing the snow cover. The left panel shows 
elevations of the Sierra Nevada and Central Valley of California, along with a portion of northwest-
ern Nevada. The middle panel shows the raw satellite data in three spectral bands (0.841–0.876, 
0.545–0.565, and 0.459–0.479 μm) from NASA’s Moderate Resolution Imaging Spectroradiometer 
(MODIS), which provides daily global data at 250 to 1000 m resolution in 36 spectral bands. From 
seven “land” bands at 500 m resolution, we derive the fractional snow-covered area—i.e., the frac-
tion of each 500 m grid cell covered by snow, shown in the right panel [10].
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mental science has established an excellent starting point. We must now develop 
this into a robust science of environmental applications.
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cology is the study of life and its interactions with the 
physical environment. Because climate change requires 
rapid adaptation, new data analysis tools are essential to 
quantify those changes in the midst of high natural vari-

ability. Ecology is a science in which studies have been performed 
primarily by small groups of individuals, with data recorded and 
stored in notebooks. But large synthesis studies are now being at-
tempted by collaborations involving hundreds of scientists. These 
larger efforts are essential because of two developments: one in 
how science is done and the other in the resource management 
questions being asked. While collaboration synthesis studies are 
still nascent, their ever-increasing importance is clear. Computa-
tional support is integral to these collaborations and key to the 
scientific process.

how GLobaL chanGes are chanGinG ecoLoGicaL science

The global climate and the Earth’s landscape are changing, and 
scientists must quantify significant linkages between atmo-
spheric, oceanic, and terrestrial processes to properly study the 
phenomena. For example, scientists are now asking how climate 
fluctuations in temperature, precipitation, solar radiation, length 
of growing season, and extreme weather events such as droughts 
affect the net carbon exchange between vegetation and the atmo-
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sphere. This question spans many Earth science disciplines with their respective 
data, models, and assumptions. 

These changes require a new approach to resolving resource management ques-
tions. In the short run of the next few decades, ecosystems cannot be restored to 
their former status. For example, with a warming climate on the West Coast of 
the United States, can historical data from coastal watersheds in southern Califor-
nia be used to predict the fish habitats of northern California coastal watersheds? 
Similarly, what can remote sensing tell us about deforestation? Addressing these 
challenges requires a synthesis of data and models that spans length scales from 
the very local (river pools) to the global (oceanic circulations) and spans time scales 
from a few tens of milliseconds to centuries.

an exampLe oF ecoLoGicaL synthesis 

Figure 1 shows a simple “science mash-
up” example of a synthesis study. The 
graph compares annual runoff from 
relatively small watersheds in the foot-
hills of the Sierra Nevada in California 
to local annual precipitation over mul-
tiple years. Annual runoff values were 
obtained from the U.S. Geological Sur-
vey (USGS) for three of the gauging sta-
tions along Dry Creek and the Schubert 
University of California experimental 
field site.1 Long-term precipitation rec-
ords from nearby rain gauges were ob-
tained from the National Climatic Data 
Center.2  The precipitation that does not 
run off undergoes evapotranspiration 
(ET) that is largely dominated by water-
shed vegetation. In these watersheds, a 
single value of 400 mm is observed over 
all years of data. A similar value of an-
nual ET was obtained by independent 

FIGURE 1.

Simple annual water balance to estimate 
evapotranspiration in Sierra Nevada foothill 
watersheds. The dashed line represents an 
annual ET of 400 mm.

1 http://waterdata.usgs.gov/nwis
2 www.ncdc.noaa.gov
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measurement from atmospheric sensors deployed over an oak savannah ecosystem 
at the AmeriFlux Tonzi Ranch tower.3 This synthesis of historical data defines a  
watershed model appropriate for historical conditions and provides a reference 
frame for addressing climate change effects in a highly variable system. 

the cominG FLooD oF ecoLoGicaL Data 

These new synthesis studies are enabled by the confluence of low-cost sensors, 
remote sensing, Internet connectivity, and commodity computing. Sensor deploy-
ments by research groups are shifting from short campaigns to long-term monitor-
ing with finer-scale and more diverse instruments. Satellites give global coverage 
particularly to remote or harsh regions where field research is hampered by physi-
cal and political logistics. Internet connectivity is enabling data sharing across or-
ganizations and disciplines. The result of these first three factors is a data flood. 
Commodity computing provides part of the solution, by allowing for the flood to 
be paired with models that incorporate different physical and biological processes 
and allowing for different models to be linked to span the length and time scales 
of interest.

The flood of ecological data and ecological science synthesis presents unique 
computing infrastructure challenges and new opportunities. Unlike sciences such 
as physics or astronomy, in which detectors are shared, in ecological science data 
are generated by a wide variety of groups using a wide variety of sampling or simu-
lation methodologies and data standards. As shown earlier in Figure 1, the use of 
published data from two different sources was essential to obtain evapotranspira-
tion. This synthesis required digital access to long records, separate processing of 
those datasets to arrive at ET, and finally verification with independent flux tower 
measurements. Other synthetic activities will require access to evolving resources 
from government organizations such as NASA or USGS, science collaborations 
such as the National Ecological Observatory Network and the WATERS Network,4 

individual university science research groups such as Life Under Your Feet,5 and 
even citizen scientist groups such as the Community Collaborative Rain, Hail and 
Snow Network6 and the USA National Phenology Network.7  

While the bulk of the data start out as digital, originating from the field sensor, 

3 www.fluxdata.org:8080/SitePages/siteInfo.aspx?US-Ton
4 www.watersnet.org 
5 www.lifeunderyourfeet.org
6 www.cocorahs.org
7 www.usanpn.org 
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radar, or satellite, the historic data and field data, which are critical for the science, 
are being digitized. The latter data are not always evenly spaced time series; they can 
include the date of leaf budding, or aerial imagery at different wavelengths and reso-
lutions to assess quantities throughout the watershed such as soil moisture, vegeta-
tion, and land use. Deriving science variables from remote sensing remains an active 
area of research; as such, hard-won field measurements often form the ground truth 
necessary to develop conversion algorithms. Citizen science field observations such 
as plant species, plant growth (budding dates or tree ring growth, for example), and 
fish and bird counts are becoming increasingly important. Integrating such diverse 
information is an ever-increasing challenge to science analysis.

naviGatinG the ecoLoGicaL Data FLooD

The first step in any ecological science analysis is data discovery and harmoniza-
tion. Larger datasets are discoverable today; smaller and historic datasets are often 
found by word of mouth. Because of the diversity of data publishers, no single re-
porting protocol exists. Unit conversions, geospatial reprojections, and time/length 
scale regularizations are a way of life. Science data catalog portals such as Sci-
Scope8 and Web services with common data models such as those from the Open 
Geospatial Consortium9 are evolving.

Integral to these science data search portals is knowledge of geospatial features 
and variable namespace mediation. The first enables searches across study water-
sheds or geological regions as well as simple polygon bounding boxes. The second 
enables searches to include multiple search terms—such as “rainfall,” “precipita-
tion,” and “precip”—when searching across data repositories with different nam-
ing conventions. A new generation of metadata registries that use semantic Web 
technologies will enable richer searches as well as automated name and unit con-
versions. The combination of both developments will enable science data searches 
such as “Find me the daily river flow and suspended sediment discharge data from 
all watersheds in Washington State with more than 30 inches of annual rainfall.”

movinG ecoLoGicaL synthesis into the cLouD

Large synthesis datasets are also leading to a migration from the desktop to cloud 
computing. Most ecological science datasets have been collections of files. An ex-
ample is the Fluxnet LaThuile synthesis dataset, containing 966 site-years of sensor 

8 www.sciscope.org
9 www.opengeospatial.org
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data from 253 sites around the world. The data for each site-year is published as a 
simple comma-separated or MATLAB-ready file of either daily aggregates or half-
hourly aggregates. Most of the scientists download some or all of the files and then 
perform analyses locally. Other scientists are using an alternative cloud service that 
links MATLAB on the desktop to a SQL Server Analysis Services data cube in the 
cloud. The data appears local, but the scientists need not be bothered with the 
individual file handling. Local download and manipulation of the remote sensing 
data that would complement that sensor data are not practical for many scientists. 
A cloud analysis now in progress using both to compute changes in evapotranspi-
ration across the United States over the last 10 years will download 3 terabytes of 
imagery and use 4,000 CPU hours of processing to generate less than 100 MB of 
results. Doing the analysis off the desktop leverages the higher bandwidth, large 
temporary storage capacity, and compute farm available in the cloud.

Synthesis studies also create a need for collaborative tools in the cloud. Science 
data has value for data-owner scientists in the form of publications, grants, reputa-
tion, and students. Sharing data with others should increase rather than decrease 
that value. Determining the appropriate citations, acknowledgment, and/or co- 
authorship policies for synthesis papers remains an open area of discussion in larger 
collaborations such as Fluxnet10 and the North American Carbon Program.11 Jour-
nal space and authorship limitations are an important concern in these discussions. 
Addressing the ethical question of what it means to be a co-author is essential: Is 
contributing data sufficient when that contribution is based on significant intellec-
tual and physical effort? Once such policies are agreed upon, simple collaborative 
tools in the cloud can greatly reduce the logistics required to publish a paper, pro-
vide a location for the discovery of collaboration authors, and enable researchers to 
track how their data are used.

how cyberinFrastructure is chanGinG ecoLoGicaL science

The flood of ecological data will break down scientific silos and enable a new gen-
eration of scientific research. The goal of understanding the impacts of climate 
change is driving research that spans disciplines such as plant physiology, soil sci-
ence, meteorology, oceanography, hydrology, and fluvial geomorphology. Bridging 
the diverse length and time scales involved will require a collection of cooperating 
models. Synthesizing the field observations with those model results at key length 

10 www.fluxdata.org
11 www.nacarbon.org/nacp
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and time scales is crucial to the development and validation of such models. 
The diversity of ecological dataset size, dataset semantics, and dataset publisher 

concerns poses a cyberinfrastructure challenge that will be addressed over the next 
several years. Synthesis science drives not only direct conversations but also virtual 
ones between scientists of different backgrounds. Advances in metadata represen-
tation can break down the semantic and syntactic barriers to those conversations. 
Data visualizations that range from our simple mashup to more complex virtual 
worlds are also key elements in those conversations. Cloud access to discoverable, 
distributed datasets and, perhaps even more important, enabling cloud data analy-
ses near the more massive datasets will enable a new generation of cross-discipline 
science. 
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he global ocean is the last physical frontier on Earth. 
Covering 70 percent of the planetary surface, it is the 
largest, most complex biome we know. The ocean is a 
huge, mobile reservoir of heat and chemical mass. As 

such, it is the “engine” that drives weather-climate systems across 
the ocean basins and the continents, directly affecting food pro-
duction, drought, and flooding on land. Water is effectively opaque 
to electromagnetic radiation, so the seafloor has not been as well 
mapped as the surfaces of Mars and Venus, and although the spa-
tial relationships within the ocean basins are well understood to 
a first order, the long- and short-term temporal variations and the 
complexities of ocean dynamics are poorly understood. 

The ultimate repository of human waste, the ocean has ab-
sorbed nearly half of the fossil carbon released since 1800. The 
ocean basins are a source of hazards: earthquakes, tsunamis, and 
giant storms. These events are episodic, powerful, often highly 
mobile, and frequently unpredictable. Because the ocean basins 
are a vast, but finite, repository of living and non-living resources, 
we turn to them for food, energy, and the many minerals neces-
sary to sustain a broad range of human lifestyles. Many scientists 
believe that underwater volcanoes were the crucible in which ear-
ly life began on Earth and perhaps on other planets. The oceans 
connect all continents; they are owned by no one, yet they belong 
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to all of us by virtue of their mobile nature. The oceans may be viewed as the com-
mon heritage of humankind, the responsibility and life support of us all.

ocean compLexity 

Our challenge is to optimize the benefits and mitigate the risks of living on a plan-
et dominated by two major energy sources: sunlight driving the atmosphere and 
much of the upper ocean, and internal heat driving plate tectonics and portions of 
the lower ocean. For more than 4 billion years, the global ocean has responded to 
and integrated the impacts of these two powerful driving forces as the Earth, the 
oceans, the atmosphere, and life have co-evolved. As a consequence, our oceans 
have had a long, complicated history, producing today’s immensely complex sys-
tem in which thousands of physical, chemical, and biological processes continually 
interact over many scales of time and space as the oceans maintain our planetary-
scale ecological “comfort zone.”

Figure 1 captures a small fraction of this complexity, which is constantly driven 
by energy from above and below. Deeper understanding of this “global life-support 
system” requires entirely novel research approaches that will allow broad spectrum, 
interactive ocean processes to be studied simultaneously and interactively by many 
scientists—approaches that enable continuous in situ examination of linkages among 
many processes in a coherent time and space framework. Implementing these pow-
erful new approaches is both the challenge and the vision of next-generation ocean  
science.

historicaL perspective

For thousands of years, humans have gone to sea in ships to escape, to conquer, to 
trade, and to explore. Between October 1957 and January 1960, we launched the 
first Earth-orbiting satellite and dove to the deepest part of the ocean. Ships, satel-
lites, and submarines have been the mainstays of spatially focused oceanographic 
research and exploration for the past 50 years. We are now poised on the next 
threshold of technological breakthrough that will advance oceanic discovery; this 
time, exploration will be focused on the time domain and interacting processes. 
This new era will draw deeply on the emergence, and convergence, of many rapidly 
evolving new technologies. These changes are setting the scene for what Marcel 
Proust called “[t]he real voyage of discovery, [which] lies not in seeking new land-
scapes, but in having new eyes.”

In many ways, this “vision” of next-generation oceanographic research and  
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FIGURE 1.

Two primary energy sources powerfully influence the ocean basins: sunlight and its radiant 
energy, and internal heat with its convective and conductive input. Understanding the complexity 
of the oceans requires documenting and quantifying—in a well-defined time-space framework over 
decades—myriad processes that are constantly changing and interacting with one another.

Illustration designed by John Delaney and Mark Stoermer;  
created by the Center for Environmental Visualization (CEV) for the NEPTUNE Program.
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education involves utilizing a wide range of innovative technologies to simultane-
ously and continuously “see,” or sense, many different processes operating through-
out entire volumes of the ocean from a perspective within the ocean. Some of these 
same capabilities will enable remote in situ detection of critical changes taking 
place within selected ocean volumes. Rapid reconfiguration of key sensor arrays 
linked to the Internet via submarine electro-optical cables will allow us to capture, 
image, document, and measure energetic and previously inaccessible phenomena 
such as erupting volcanoes, major migration patterns, large submarine slumps, big 
earthquakes, giant storms, and a host of other complex phenomena that have been 
largely inaccessible to scientific study. 

the Fourth paraDiGm 

The ocean has been chronically under-sampled for as long as humans have been 
trying to characterize its innate complexity. In a very real sense, the current suite 
of computationally intensive numerical/theoretical models of ocean behavior has 
outstripped the requisite level of actual data necessary to ground those models in 
reality. As a consequence, we have been unable to even come close to useful pre-
dictive models of the real behavior of the oceans. Only by quantifying powerful 
episodic events, like giant storms and erupting volcanoes, within the context of 
longer-term decadal changes can we begin to approach dependable predictive mod-
els of ocean behavior. Over time, as the adaptive models are progressively refined 
by continual comparison with actual data flowing from real systems, we slowly 
gain the ability to predict the future behavior of these immensely complex natural 
systems. To achieve that goal, we must take steps to fundamentally change the way 
we approach oceanography.

This path has several crucial steps. We must be able to document conditions 
and measure fluxes within the volume of the ocean, simultaneously and in real time, 
over many scales of time and space, regardless of the depth, energy, mobility, or 
complexity of the processes involved. These measurements must be made using co- 
located arrays of many sensor types, operated by many investigators over periods of 
decades to centuries. And the data must be collected, archived, visualized, and com-
pared immediately to model simulations that are explicitly configured to address 
complexity at scales comparable in time and space to the actual measurements. 

This approach offers three major advantages: (1) The models must progressively 
emulate the measured reality through constant comparison with data to capture 
the real behavior of the oceans in “model space” to move toward more predictive 



3 1THE FOURTH PARADIGM

simulations; (2) When the models and the data disagree, assuming the data are 
valid, we must immediately adapt at-sea sensor-robot systems to fully characterize 
the events that are unfolding because they obviously offer new insights into the 
complexities we seek to capture in the failed models; (3) By making and archiving 
all observations and measurements in coherently indexed time and space frame-
works, we can allow many investigators (even those not involved in the data collec-
tion) to examine correlations among any number of selected phenomena during, 
or long after, the time that the events or processes occur. If the archived data are 
immediately and widely available via the Internet, the potential for discovery rises 
substantially because of the growing number of potential investigators who can ex-
plore a rapidly expanding spectrum of “parameter space.” For scientists operating 
in this data-intensive environment, there will be a need for development of a new 
suite of scientific workflow products that can facilitate the archiving, assimilation, 
visualization, modeling, and interpretation of the information about all scientific 
systems of interest. Several workshop reports that offer examples of these “work-
flow products” are available in the open literature [1, 2].

emerGence anD converGence 

Ocean science is becoming the beneficiary of a host of powerful emergent tech-
nologies driven by many communities that are entirely external to the world of 
ocean research—they include, but are not limited to, nanotechnology, biotechnol-
ogy, information technology, computational modeling, imaging technologies, and 
robotics. More powerful yet will be the progressive convergence of these enabling 
capabilities as they are adapted to conduct sophisticated remote marine operations 
in novel ways by combining innovative technologies into appropriate investigative 
or experimental systems.

For example, computer-enabled support activities must include massive data 
storage systems, cloud computing, scientific workflow, advanced visualization dis-
plays, and handheld supercomputing. Instead of batteries and satellites being used 
to operate remote installations, electrical power and the vast bandwidth of optical 
fiber will be used to transform the kinds of scientific and educational activities 
that can be conducted within the ocean. Adaptation of industry-standard electro- 
optical cables for use in oceanographic research can fundamentally change the na-
ture of human telepresence throughout the full volume of the oceans by introduc-
ing unprecedented but routinely available power and bandwidth into “ocean space.” 
High-resolution optical and acoustic sensing will be part of the broader technology 
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of “ocean imaging systems.” These approaches will include routine use of high- 
definition video, in stereo if needed, as well as high-resolution sonar, acoustic 
lenses, laser imaging, and volumetric sampling. Advanced sensor technologies will 
include chemical sensing using remote, and mobile, mass spectrometers and gas 
chromatographs, eco-genomic analysis, and adaptive sampling techniques. 

an inteGrateD approach 

After decades of planning [3, 4], the U.S. National Science Foundation (NSF) is on 
the verge of investing more than US$600 million over 6 years in the construction 
and early operation of an innovative infrastructure known as the Ocean Observa-
tories Initiative (OOI) [4]. The design life of the program is 25 years. In addition to 
making much-needed high-latitude and coastal measurements supported by rela-
tively low-bandwidth satellite communications systems, this initiative will include 
a transformative undertaking to implement electro-optically cabled observing sys-
tems in the northeast Pacific Ocean [5-7] off the coasts of Washington, Oregon, and 
British Columbia, as illustrated in Figure 2.1 

These interactive, distributed sensor networks in the U.S. and Canada will cre-
ate a large-aperture “natural laboratory” for conducting a wide range of long-term 
innovative experiments within the ocean volume using real-time control over the 
entire “laboratory” system. Extending unprecedented power and bandwidth to a 
wide range of interactive sensors, instruments, and robots distributed throughout 
the ocean water, at the air-sea interface, on the seafloor, and below the seafloor 
within drill holes will empower next-generation creativity and exploration of the 
time domain among a broad spectrum of investigators. The University of Washing-
ton leads the cabled component of the NSF initiative, known as the Regional Scale 
Nodes (formerly known, and funded, as NEPTUNE); the University of Victoria 
leads the effort in Canada, known as NEPTUNE Canada. The two approaches were 
conceived jointly in 2000 as a collaborative U.S.-Canadian effort. The Consortium 
for Ocean Leadership in Washington, D.C., is managing and integrating the entire 
OOI system for NSF. Woods Hole Oceanographic Institution and the University of 
California, San Diego, are responsible for overseeing the Coastal-Global and Cyber-
Infrastructure portions of the program, respectively. Oregon State University and 
Scripps Institution of Oceanography are participants in the Coastal-Global portion 
of the OOI.

1 www.interactiveoceans.ocean.washington.edu
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The cabled ocean observatory approach will revolutionize ocean science by pro-
viding interactive access to ocean data and instruments 24/7/365 over two to three 
decades. More than 1,200 kilometers of electro-optical submarine cable will de-
liver many tens of kilowatts of power to seafloor nodes, where instruments that 
might spread over a 50 km radius for each node will be plugged in directly or via 
secondary extension cables. The primary cable will provide between 2.5 and 10 
gigabit/sec bandwidth connectivity between land and a growing number of fixed 
sensor packages and mobile sensor platforms. We expect that a host of novel ap-
proaches to oceanography will evolve based on the availability of in situ power and 
bandwidth. A major benefit will be the real-time data return and command-control 
of fleets of remotely operated vehicles (ROVs) and autonomous underwater vehicles 

FIGURE 2.

A portion of the OOI focuses on the dynamic behavior of the Juan de Fuca Plate and the energetic pro-
cesses operating in the overlying ocean and atmosphere. Recent modifications in the Regional Scale 
Nodes (RSN) have focused on delivery of the elements shown in red, and the pink components are 
future expansion. The inset shows the crest of Axial Seamount along the active Juan de Fuca Ridge. 
Each square block site will provide unprecedented electrical power and bandwidth available for 
research and education. Many of the processes shown in Figure 1 can be examined at the sites here.                          

Image created by CEV for OOI-RSN.
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(AUVs). The infrastructure will be adaptable, expandable, and exportable to inter-
ested users. Data policy for the OOI calls for all information to be made available 
to all interested users via the Internet (with the exception of information bearing 
on national security). 

Hardwired to the Internet, the cabled observatories will provide scientists, 
students, educators, and the public with virtual access to remarkable parts of our 
planet that are rarely visited by humans. In effect, the Internet will be extended 
to the seafloor, with the ability to interact with a host of instruments, including 
HD video live from the many environments within the oceans, as illustrated in  
Figure 3. The cabled observatory systems will be able to capture processes at the 
scale of the tectonic plate, mesoscale oceanic eddies, or even smaller scales. Re-
search into representative activities responsible for climate change, major biologi-
cal productivity at the base of the food chain, or encroaching ocean acidification (to 
name a few) will be readily conducted with this new infrastructure. Novel studies 

FIGURE 3.

Next-generation scientists or citizens. This virtual picture shows a deep ocean octopus, known as 
Grimpoteuthis, and a portion of a submarine hydrothermal system on the Juan de Fuca Ridge. 
Such real-time displays of 3-D HD video will be routine within 5 years. 

Graphic designed by Mark Stoermer and created by CEV for NEPTUNE in 2005.
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of mid-ocean spreading centers, transform faults, and especially processes in the 
subduction zone at the base of the continental slope, which may trigger massive 
earthquakes in the Pacific Northwest, will also be addressable using the same in-
vestment in the same cabled infrastructure. 

This interactive ocean laboratory will be enabled by a common cyberinfrastruc-
ture that integrates multiple observatories, thousands of instruments, tens of thou-
sands of users, and petabytes of data. The goals of the cabled ocean observatory can 
be achieved only if the at-sea portion is complemented by state-of-the-art informa-
tion technology infrastructure resulting from a strong collaborative effort between 
computer scientists and ocean scientists. Such collaboration will allow scientists to 
interact with the ocean through real-time command and control of sensors; provide 
models with a continuous data feed; automate data quality control and calibration; 
and support novel approaches to data management, analysis, and visualization.

what is possibLe? 

Figure 4 on the next page depicts some of the potentially transformative capabili-
ties that could emerge in ocean science by 2020. In the long term, a key element of 
the introduction of unprecedented power and bandwidth for use within the ocean 
basins will be the potential for bold and integrative designs and developments that 
enhance our understanding of, and perhaps our ability to predict, the behavior of 
Earth, ocean, and atmosphere interactions and their bearing on a sustainable plan-
etary habitat. 

concLusion 

The cabled ocean observatory merges dramatic technological advancements in 
sensor technologies, robotic systems, high-speed communication, eco-genomics, 
and nanotechnology with ocean observatory infrastructure in ways that will sub-
stantially transform the approaches that scientists, educators, technologists, and 
policymakers take in interacting with the dynamic global ocean. Over the coming 
decades, most nations will implement systems of this type in the offshore exten-
sions of their territorial seas. As these systems become more sophisticated and data 
become routinely available via the Internet, the Internet will emerge as the most 
powerful oceanographic research tool on the planet. In this fashion, the legacy of 
Jim Gray will continue to grow as we learn to discover truths and insights within 
the data we already have “in the can.” 

While the cabled observatory will have profound ramifications for the manner 
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FIGURE 4.

Some of the transformative developments that could become routine within 5 years with the added 
power of a cabled support system. The top image shows miniaturized genomic analysis systems 
adapted from land laboratories to the ocean to allow scientists, with the flip of a switch in their 
lab hundreds of miles away, to sample ambient flow remotely and run in situ gene sequencing 
operations within the ocean. The data can be made available on the Internet within minutes of the 
decision to sample microbes in an erupting submarine volcanic plume or a seasonally driven phy-
toplankton bloom. The lower part shows a conceptual illustration of an entire remote analytical-
biological laboratory on the seafloor that allows a variety of key measurements or dissections to be 
made in situ using stereo high-definition video to guide high-precision remote manipulations. 

Scientific concepts by Ginger Armbrust and John Delaney; graphic design by Mark Stoermer for CEV.
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in which scientists, engineers, and educators conduct their professional activities, 
the most far-reaching effects may be a significant shift in public attitudes toward 
the oceans as well as toward the scientific process. The real-time data and high-
speed communications inherent in cabled remote observing systems will also open 
entirely new avenues for the public to interact with the natural world. 

In the final analysis, having predictive models of how the ocean functions based 
on decades of refining sophisticated computer simulations against high-quality 
observations from distributed sensor networks will form the basis for learning to 
manage, or at least adapt to, the most powerful climate modulating system on the 
planet—the global ocean. 
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E ARTH AN D ENVI RO N M ENT

hroughout history, astronomers have been accustomed 
to data falling from the sky. But our relatively newfound 
ability to store the sky’s data in “clouds” offers us fascinat-
ing new ways to access, distribute, use, and analyze data, 

both in research and in education. Here we consider three inter-
related questions: (1) What trends have we seen, and will soon 
see, in the growth of image and data collection from telescopes?  
(2) How might we address the growing challenge of finding the 
proverbial needle in the haystack of this data to facilitate scientific 
discovery? (3) What visualization and analytic opportunities does 
the future hold?

trenDs in Data Growth 

Astronomy has a history of data collection stretching back at least 
to Stonehenge more than three millennia ago. Over time, the 
format of the information recorded by astronomers has changed, 
from carvings in stone to written records and hand-drawn illustra-
tions to photographs to digital media. 

While the telescope (c. 1600) and the opening up of the electro-
magnetic spectrum beyond wavelengths visible to the human eye 
(c. 1940) led to qualitative changes in the nature of astronomical 
investigations, they did not increase the volume of collected data 
nearly as much as did the advent of the Digital Age. 
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Charge-coupled devices (CCDs), which came into widespread use by the 1980s, 
and equivalent detectors at non-optical wavelengths became much more efficient 
than traditional analog media (such as photographic plates). The resulting rise in 
the rate of photon collection caused the ongoing (and potentially perpetually accel-
erating) increase in data available to astronomers. The increasing capabilities and 
plummeting price of the digital devices used in signal processing, data analysis, and 
data storage, combined with the expansion of the World Wide Web, transformed 
astronomy from an observational science into a digital and computational science. 

For example, the Large Synoptic Survey Telescope (LSST), coming within the 
decade, will produce more data in its first year of operation—1.28 petabytes—than 
any other telescope in history by a significant margin. The LSST will accomplish 
this feat by using very sensitive CCDs with huge numbers of pixels on a relatively 
large telescope with very fast optics (f/1.234) and a wide field of view (9.6 square de-
grees), and by taking a series of many shorter exposures (rather than the traditional 
longer exposures) that can be used to study the temporal behavior of astronomical 
sources. And while the LSST, Pan-STARRS, and other coming astronomical mega-
projects—many at non-optical wavelengths—will produce huge datasets covering 
the whole sky, other groups and individuals will continue to add their own smaller, 
potentially more targeted, datasets.

For the remainder of this article, we will assume that the challenge of managing 
this explosive growth in data will be solved (likely through the clever use of “cloud” 
storage and novel data structures), and we will focus instead on how to offer better 
tools and novel technical and social analytics that will let us learn more about our 
universe.

A number of emerging trends can help us find the “needles in haystacks” of data 
available over the Internet, including crowdsourcing, democratization of access via 
new browsing technologies, and growing computational power.

crowDsourcinG 

The Sloan Digital Sky Survey was undertaken to image, and measure spectra for, 
millions of galaxies. Most of the galaxy images had never been viewed by a human 
because they were automatically extracted from wide-field images reduced in an 
automated pipeline. To test a claim that more galaxies rotate in an anticlockwise 
direction than clockwise, the Sloan team used custom code to create a Web page 
that served up pictures of galaxies to members of the public willing to play the on-
line Galaxy Zoo game, which consists primarily of classifying the handedness of the 
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galaxies. Clever algorithms within the “Zoo” serve the same galaxy to multiple users 
as a reference benchmark and to check up on players to see how accurate they are.

The results from the first year’s aggregated classification of galaxies by the public 
proved to be just as accurate as that done by astronomers. More than 50 million 
classifications of a million galaxies were done by the public in the first year, and 
the claim about right/left handed preference was ultimately refuted. Meanwhile, 
Hanny Van Arkel, a schoolteacher in Holland, found a galaxy that is now the blu-
est known galaxy in the universe. It has come under intense scrutiny by major 
telescopes, including the Very Large Array (VLA) radio telescope, and will soon be 
scrutinized by the Hubble Space Telescope.

DemocratizinG access via new browsinG technoLoGies 

The time needed to acquire data from any astronomical object increases at least 
as quickly as the square of the distance to that object, so any service that can ac-
cumulate custom ensembles of already captured images and data effectively brings 
the night sky closer. The use of archived online data stored in a “data cloud” is fa-
cilitated by new software tools, such as Microsoft’s WorldWide Telescope (WWT), 
which provide intuitive access to images of the night sky that have taken astrono-
mers thousands and thousands of hours of telescope time to acquire.

Using WWT (shown in Figure 1 on the next page), anyone can pan and zoom 
around the sky, at wavelengths from X-ray through radio, and anyone can navigate 
through a three-dimensional model of the Universe constructed from real observa-
tions, just to see what’s there. Anyone can notice an unusual correspondence be-
tween features at multiple wavelengths at some position in the sky and click right 
through to all the published journal articles that discuss that position. Anyone can 
hook up a telescope to the computer running WWT and overlay live, new images on 
top of online images of the same piece of sky at virtually any wavelength. Anyone 
can be guided in their explorations via narrated “tours” produced by WWT users. 
As more and more tours are produced, WWT will become a true “sky browser,” 
with the sky as the substrate for conversations about the universe. Explorers will 
navigate along paths that intersect at objects of common interest, linking ideas and 
individuals. Hopping from tour to tour will be like surfing from Web page to Web 
page now.

But the power of WWT goes far beyond its standalone ability. It is, and will con-
tinue to be, part of an ecosystem of online astronomy that will speed the progress 
of both “citizen” and “professional” science in the coming years.
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Microsoft, through WWT, and Google, through Google Sky, have both cre-
ated API (application programming interface) environments that allow the sky- 
browsing software to function inside a Web page. These APIs facilitate the creation 
of everything from educational environments for children to “citizen science” sites 
and data distribution sites for professional astronomical surveys.

Tools such as Galaxy Zoo are now easy to implement, thanks to APIs. So it now 
falls to the astronomical and educational communities to capitalize on the public’s 
willingness to help navigate the increasing influx of data. High-school students can 
now use satellite data that no one has yet analyzed to make real discoveries about 
the Universe, rather than just sliding blocks down inclined planes in their physics 
class. Amateur astronomers can gather data on demand to fill in missing informa-
tion that students, professionals, and other astronomers ask for online. The collab-
orative and educational possibilities are truly limitless.

The role of WWT and tools like it in the professional astronomy community will 

FIGURE 1.

WorldWide Telescope view of the 30 Doradus region near the Large Magellanic Cloud. 

Image courtesy of the National Optical Astronomy Observatory/National Science Foundation.
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also continue to expand. WWT in particular has already become a better way to 
access all-sky surveys than any extant professional tool. WWT, as part of interna-
tional “virtual observatory” efforts, is being seamlessly linked to quantitative and 
research tools that astronomers are accustomed to, in order to provide a beautiful 
contextual viewer for information that is usually served only piecemeal. And it has 
already begun to restore the kinds of holistic views of data that astronomers were 
used to before the Digital Age chopped up the sky into so many small pieces and 
incompatible formats.

GrowinG computationaL power 

In 10 years, multi-core processors will enhance commodity computing power two 
to three orders of magnitude beyond today’s computers. How will all this comput-
ing power help to address the data deluge? Faster computers and increased stor-
age and bandwidth will of course enable our contemporary approaches to scale to 
larger datasets. In addition, fully new ways of handling and analyzing data will be 
enabled. For example, computer vision techniques are already surfacing in con-
sumer digital cameras with face detection and recognition as common features. 

More computational power will allow us to triage and potentially identify unique 
objects, events, and data outliers as soon as they are detected and route them to 
citizen-scientist networks for confirmation. Engagement of citizen scientists in the 
alerting network for this “last leg” of detection can be optimized through better-
designed interfaces that can transform work into play. Interfaces could potentially 
connect human confirmation of objects with global networks of games and simula-
tions where real-time data is broadly distributed and integrated into real-time mas-
sive multiplayer games that seamlessly integrate the correct identification of the 
objects into the games’ success metrics. Such games could give kids the opportunity 
to raise their social stature among game-playing peers while making a meaningful 
contribution to science.

visuaLization anD anaLysis For the Future 

WWT offers a glimpse of the future. As the diversity and scale of collected data ex-
pand, software will have to become more sophisticated in terms of how it accesses 
data, while simultaneously growing more intuitive, customizable, and compatible. 

The way to improve tools like WWT will likely be linked to the larger challenge 
of how to improve the way visualization and data analysis tools can be used to-
gether in all fields—not just in astronomy.
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Visualization and analysis challenges are more common across scientific fields 
than they are different. Imagine, for example, an astronomer and a climate scien-
tist working in parallel. Both want to study the properties of physical systems as 
observed within a spherical coordinate system. Both want to move seamlessly back 
and forth between, for example, spectral line observations of some sources at some 
specific positions on a sphere (e.g., to study the composition of a stellar atmosphere 
or the CO2 in the Earth’s atmosphere), the context for those positions on the sphere, 
and journal articles and online discussions about these phenomena.

Today, even within a discipline, scientists are often faced with many choices 
of how to accomplish the same subtask in analysis, but no package does all the 
subtasks the way they would prefer. What the future holds is the potential for sci-
entists, or data specialists working with scientists, to design their own software 
by linking componentized, modular applications on demand. So, for example, the 
astronomer and the climate scientist could both use some generalized version of 
WWT as part of a separate, customized system that would link to their favorite 
discipline- or scientist-specific packages for tasks such as spectral-line analysis.

concLusion

The question linking the three topics we have discussed here is, “How can we de-
sign new tools to enhance discovery in the data deluge to come in astronomy?” 
The answer seems to revolve around improved linkage between and among existing  
resources—including citizen scientists willing to help analyze data; accessible image 
browsers such as WWT; and more customized visualization tools that are mashed 
up from common components. This approach, which seeks to more seamlessly 
connect (and reuse) diverse components, will likely be common to many fields of 
science—not just astronomy—in the coming decade.
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E ARTH AN D ENVI RO N M ENT

Increasing environmental challenges worldwide and a grow-
ing awareness of global climate change indicate an urgent need 
for environmental scientists to conduct science in a new and bet-
ter way. Existing large-scale environmental monitoring systems, 

with their coarse spatiotemporal resolution, are not only expen-
sive, but they are incapable of revealing the complex interactions 
between atmospheric and land surface components with enough 
precision to generate accurate environmental system models.

This is especially the case in mountainous regions with highly 
complex surfaces—the source of much of the world’s fresh water 
and weather patterns. The amount of data required to understand 
and model these interactions is so massive (terabytes, and increas-
ing) that no off-the-shelf solution allows scientists to easily man-
age and analyze it. This has led to rapidly growing global collabo-
ration among environmental scientists and computer scientists to 
approach these problems systematically and to develop sensing 
and database solutions that will enable environmental scientists 
to conduct their next-generation experiments.

next-Generation environmentaL science 

The next generation of environmental science, as shown in Fig- 
ure 1, is motivated by the following observations by the atmo-
spheric science community: First, the most prominent challenge 

Instrumenting the Earth:  
Next-Generation Sensor Networks 

and Environmental Science

MICHAEl lEHNING 
NICHOlAS DAWES 
MATHIAS BAVAY 
WSL Institute for  
Snow and Avalanche 
Research SLF

MARC PARlANGE 
École Polytechnique 
Fédérale de Lausanne 

SuMAN NATH  
FENG zHAO 
Microsoft Research



EARTH AND ENVIRONMENT4 6

in weather and climate prediction is rep-
resented by land-atmosphere interaction 
processes. Second, the average effect of 
a patchy surface on the atmosphere can 
be very different from an effect that is 
calculated by averaging a particular 
surface property such as temperature 
or moisture [1-3]—particularly in the 
mountains, where surface variability is 
typically very high.

Figure 2 shows an example of this—a 
highly complex mountain surface with 
bare rocks, debris-covered permafrost, 
patchy snow cover, sparse trees, and 
shallow and deep soils with varying 
vegetation. All of these surface features 
can occur within a single kilometer—a 
resolution that is typically not reached 
by weather forecast models of even the 
latest generation. Existing models of 
weather prediction and climate change 
still operate using a grid resolution, 
which is far too coarse (multiple kilome-
ters) to explicitly and correctly map the 
surface heterogeneity in the mountains 
(and elsewhere). This can lead to severe 
errors in understanding and prediction.

 In next-generation environmental 
science, data resolution will be addressed using densely deployed (typically wire-
less) sensor networks. Recent developments in wireless sensing have made it pos-
sible to instrument and sense the physical world with high resolution and fidelity 
over an extended period of time. Wireless connections enable reliable collection 
of data from remote sensors to send to laboratories for processing, analyzing, and 
archiving. Such high-resolution sensing enables scientists to understand more pre-
cisely the variability and dynamics of environmental parameters. Wireless sensing 
also provides scientists with safe and convenient visibility of in situ sensor deploy-

FIGURE 1.

A typical data source context for next-
generation environmental science, with a 
heterogeneous sensor deployment that in-
cludes (1) mobile stations, (2) high-resolution 
conventional weather stations, (3) full-size 
snow/weather stations, (4) external weather 
stations, (5) satellite imagery, (6) weather 
radar, (7) mobile weather radar, (8) stream 
observations, (9) citizen-supplied observa-
tions, (10) ground LIDAR, (11) aerial LIDAR, 
(12) nitrogen/methane measures, (13) snow 
hydrology and avalanche probes, (14) seismic 
probes, (15) distributed optical fiber tempera-
ture sensing, (16) water quality sampling, 
(17) stream gauging stations, (18) rapid mass 
movements research, (19) runoff stations, and 
(20) soil research.
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ments and allows them to enable, debug, and test the deployments from the labo-
ratory. This helps minimize site visits, which can be costly, time consuming, and 
even dangerous.

However, dense sensor deployments in harsh, remote environments remain 
challenging for several reasons. First, the whole process of sensing, computation, 
and communication must be extremely energy efficient so that sensors can remain 
operational for an extended period of time using small batteries, solar panels, or 
other environmental energy. Second, sensors and their communication links must 
be fairly robust to ensure reliable data acquisition in harsh outdoor environments. 
Third, invalid sensor data due to system failures or environmental impacts must be 
identified and treated accordingly (e.g., flagged or even filtered from the dataset). 
Although recent research (including the Swiss Experiment and Life Under Your 
Feet) partially addresses these issues, further research is needed to address them in 
many production systems.

FIGURE 2.

Terrestrial laser scan for snow distribution in the Swiss Alps show-
ing typical patchy snow cover.
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manaGinG anD expLorinG massive voLumes oF sensor Data

High-resolution environmental sensing introduces severe data management chal-
lenges for scientists. These include reliably archiving large volumes (many terabytes) 
of data, sharing such data with users within access control policies, and maintaining 
sufficient context and provenance of sensor data using correct metadata [4].

Environmental scientists can use commercial database tools to address many of 
the data management and exploratory challenges associated with such a massive 
influx of data. For example, Microsoft’s SenseWeb project [5] provides an infra-
structure, including an underlying Microsoft SQL Server database, for archiving 
massive amounts of sensor data that might be compressed and distributed over 
multiple computers. SenseWeb also maintains suitable data indexes and enables 
efficient query processing to help users quickly explore the dataset to find features 
for detailed analysis [5-7]. But even with these capabilities, SenseWeb hits just the 
tip of the iceberg of the challenging data management tasks facing environmental 
scientists. Additional tools are necessary to efficiently integrate sensor data with 
relevant context and provide data provenance. Querying such data in a unified 
framework remains challenging. More research is also needed to deal with uncer-
tain data that comes from noisy sensors and to handle the constant data flow from 
distributed locations.

To better understand environmental phenomena, scientists need to derive and 
apply various models to transform sensor data into scientific and other practical 
results. Database technology can help scientists to easily integrate observational 
data from diverse sources, possibly distributed over the Internet, with model assess-
ments and forecasts—a procedure known as data assimilation. Sophisticated data 
mining techniques can allow scientists to easily explore spatiotemporal patterns of 
data (both interactively as well as in batch on archived data). Modeling techniques 
can provide correct and timely prediction of phenomena such as flooding events, 
landslides, or avalanche cycles, which can be highly useful for intervention and 
damage prevention, even with just a few hours of lead time. This very short-term 
forecasting is called nowcasting in meteorology.

Scientists in the Swiss Experiment project1 have made progress in useful data as-
similation and nowcasting. One case study in this project applies advanced sensors 
and models to forecasting alpine natural hazards [8]. A refined nowcast relies on 
the operational weather forecast to define the target area of a potential storm that 

1 www.swiss-experiment.ch
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would affect a small-scale 
region (a few square kilo-
meters) in the mountains. 
The operational weather 
forecast should allow suf- 
ficient time to install lo-
cal mobile stations (such 
as SensorScope stations2) 
and remote sensing devic-
es at the target area and 
to set up high-resolution 
hazard models. In the long 
term, specialized weath- 
er forecast models will be 
developed to allow much more precise local simulation.

 To increase the public’s environmental awareness and to support decision and 
policy makers, useful findings from scientific experiments must be presented and 
disseminated in a practical fashion. For example, SenseWeb provides a Web-based 
front end called SensorMap3 that presents real-time and historical environmental 
factors in an easy-to-understand visual interface. It overlays spatial visualizations 
(such as icons showing current air pollution at a location or images showing distri-
bution of snowfalls) over a browsable geographic map, plays the visualizations of 
selected environmental datasets as a movie on top of a geographic map, and shows 
important trends in historic environmental data as well as useful summaries of 
real-time environmental data. (See Figure 3.) At present, such platforms support 
only a limited set of visualizations, and many challenges remain to be solved to sup-
port the more advanced visualizations required by diverse audiences.

worLDwiDe environmentaL monitorinG

We have described the next-generation environmental monitoring system as isolat-
ed—focused on a particular region of interest such as a mountain range, ice field, or 
forest. This is how such environmental systems are starting to be deployed. How-
ever, we foresee far more extensive monitoring systems that can allow scientists 
to share data with one another and combine and correlate data from millions of 

FIGURE 3.

SensorMap showing temperature distribution overlaid on 
3-D mountain terrain.

2 www.swiss-experiment.ch/index.php/SensorScope:Home
3 www.sensormap.org
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sensors all over the world to gain an even better understanding of global environ-
mental patterns.

Such a global-scale sensor deployment would introduce unprecedented benefits 
and challenges. As sensor datasets grow larger, traditional data management tech-
niques (such as loading data into a SQL database and then querying it) will clearly 
prove inadequate. To avoid moving massive amounts of data around, computations 
will need to be distributed and pushed as close to data sources as possible [7]. To 
reduce the storage and communication footprint, datasets will have to be com-
pressed without loss of fidelity. To support data analysis with reasonable latencies, 
computation should preferably be done over compressed data [9]. Scientific analy-
sis will also most likely require additional metadata, such as sensor specifications, 
experiment setups, data provenance, and other contextual information. Data from 
heterogeneous sources will have to be integrated in a unified data management and 
exploration framework [10].

Obviously, computer science tools can enable this next-generation environmen-
tal science only if they are actually used by domain scientists. To expedite adoption 
by domain scientists, such tools must be intuitive, easy to use, and robust. More-
over, they cannot be “one-size-fits-all” tools for all domains; rather, they should 
be domain-specific custom tools—or at least custom variants of generic tools. De-
veloping these tools will involve identifying the important problems that domain 
scientists are trying to answer, analyzing the design trade-offs, and focusing on 
important features. While such application engineering approaches are common 
for non-science applications, they tend not to be a priority in science applications. 
This must change. 

concLusion

The close collaboration between environmental science and computer science 
is providing a new and better way to conduct scientific research through high- 
resolution and high-fidelity data acquisition, simplified large-scale data man-
agement, powerful data modeling and mining, and effective data sharing and  
visualization. In this paper, we have outlined several challenges to realizing the  
vision of next-generation environmental science. Some significant progress has been 
made in this context—such as in the Swiss Experiment and SenseWeb, in which an  
advanced, integrated environmental data infrastructure is being used by a variety 
of large environmental research projects, for environmental education, and by in-
dividual scientists. Meanwhile, dramatic progress is being made in complementary 
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fields such as basic sensor technology. Our expectation is that all of these advanc-
es in instrumenting the Earth will help us realize the dreams of next-generation  
environmental science—allowing scientists, government, and the public to better  
understand and live safely in their environment.
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H E ALTH AN D WELLBE I N G

SImoN mErcEr |  Microsoft Research

Part 2 of this book explores the remarkable progress  
and challenges we are seeing in the most intimate and 
personal of our sciences, the one with the most immedi-
ate impact on all of us across the planet: the science of 

health and medicine. 
The first article sets the scene. Gillam et al. describe the prog-

ress of medical science over human history and make a strong 
case for a convergence of technologies that will change the face of 
healthcare within our lifetime. The remaining articles shed light 
on the convergent strands that make up this larger picture, by fo-
cusing on particular medical science challenges and the technolo-
gies being developed to overcome them.

Any assertion that the coming healthcare revolution will be 
universal is credible only if we can demonstrate how it can cross 
the economic and social divides of the modern world. Robertson et 
al. show that a combination of globally pervasive cell phone tech-
nology and the computational technique of Bayesian networks can 
enable collection of computerized healthcare records in regions 
where medical care is sparse and can also provide automated, ac-
curate diagnoses.

An understanding of the human brain is one of the grand chal-
lenges of medicine, and Lichtman et al. describe their approach to 
the generation of the vast datasets needed to understand this most 
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complex of structures. Even imaging the human brain at the subcellular level, 
with its estimated 160 trillion synaptic connections, is a challenge that will test 
the bounds of data storage, and that is merely the first step in deducing function 
from form.

An approach to the next stage of understanding how we think is presented by 
Horvitz and Kristan, who describe techniques for recording sequences of neuronal 
activity and correlating them with behavior in the simplest of organisms. This work 
will lead to a new generation of software tools, bringing techniques of machine 
learning/artificial intelligence to generate new insights into medical data.

While the sets of data that make up a personal medical record are orders of mag-
nitude smaller than those describing the architecture of the brain, current trends 
toward universal electronic healthcare records mean that a large proportion of the 
global population will soon have records of their health available in a digital form. 
This will constitute in aggregate a dataset of a size and complexity rivaling those of 
neuroscience. Here we find parallel challenges and opportunities. Buchan, Winn, 
and Bishop apply novel machine learning techniques to this vast body of healthcare 
data to automate the selection of therapies that have the most desirable outcome. 
Technologies such as these will be needed if we are to realize the world of the 
“Healthcare Singularity,” in which the collective experience of human healthcare 
is used to inform clinical best practice at the speed of computation.

While the coming era of computerized health records promises more accessible 
and more detailed medical data, the usability of this information will require the 
adoption of standard forms of encoding so that inferences can be made across data-
sets. Cardelli and Priami look toward a future in which medical data can be overlaid 
onto executable models that encode the underlying logic of biological systems—to 
not only depict the behavior of an organism but also predict its future condition or 
reaction to a stimulus. In the case of neuroscience, such models may help us under-
stand how we think; in the case of medical records, they may help us understand 
the mechanisms of disease and treatment. Although the computational modeling 
of biological phenomena is in its infancy, it provides perhaps the most intriguing 
insights into the emerging complementary and synergistic relationship between 
computational and living systems. 
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n 1499, when portuguese explorer vasco da gama returned 
home after completing the first-ever sea voyage from Europe 
to India, he had less than half of his original crew with him—
scurvy had claimed the lives of 100 of the 160 men. Through-

out the Age of Discovery,1 scurvy was the leading cause of death 
among sailors. Ship captains typically planned for the death of as 
many as half of their crew during long voyages. A dietary cause 
for scurvy was suspected, but no one had proved it. More than a 
century later, on a voyage from England to India in 1601, Captain 
James Lancaster placed the crew of one of his four ships on a regi-
men of three teaspoons of lemon juice a day. By the halfway point 
of the trip, almost 40% of the men (110 of 278) on three of the 
ships had died, while on the lemon-supplied ship, every man sur-
vived [1]. The British navy responded to this discovery by repeat-
ing the experiment—146 years later. 

In 1747, a British navy physician named James Lind treated sail-
ors suffering from scurvy using six randomized approaches and 
demonstrated that citrus reversed the symptoms. The British navy 
responded, 48 years later, by enacting new dietary guidelines re-
quiring citrus, which virtually eradicated scurvy from the British 
fleet overnight. The British Board of Trade adopted similar dietary 

1 15th to 17th centuries.



HEALTH AND WELLBEING5 8

practices for the merchant fleet in 1865, an additional 70 years later. The total time 
from Lancaster’s definitive demonstration of how to prevent scurvy to adoption 
across the British Empire was 264 years [2].

The translation of medical discovery to practice has thankfully improved sub-
stantially. But a 2003 report from the Institute of Medicine found that the lag be-
tween significant discovery and adoption into routine patient care still averages 
17 years [3, 4]. This delayed translation of knowledge to clinical care has negative 
effects on both the cost and the quality of patient care. A nationwide review of 439 
quality indicators found that only half of adults receive the care recommended by 
U.S. national standards [5]. 

The ImpacT of The InformaTIon explosIon In medIcIne

Despite the adoption rate of medical knowledge significantly improving, we face 
a new challenge due to the exponential increase in the rate of medical knowledge 
discovery. More than 18 million articles are currently catalogued in the biomedical 
literature, including over 800,000 added in 2008. The accession rate has doubled 
every 20 years, and the number of articles per year is expected to surpass 1 million 
in 2012, as shown in Figure 1. 

Translating all of this emerging medical knowledge into practice is a staggering 
challenge. Five hundred years ago, Leonardo da Vinci could be a painter, engineer, 
musician, and scientist. One hundred years ago, it is said that a physician might 
have reasonably expected to know everything in the field of medicine.2 Today, a 
typical primary care doctor must stay abreast of approximately 10,000 diseases and 
syndromes, 3,000 medications, and 1,100 laboratory tests [6]. Research librarians 
estimate that a physician in just one specialty, epidemiology, needs 21 hours of 
study per day just to stay current [7]. Faced with this flood of medical information, 
clinicians routinely fall behind, despite specialization and sub-specialization [8]. 

The sense of information overload in medicine has been present for surprisingly 
many years. An 1865 speech by Dr. Henry Noyes to the American Ophthalmologic 
Society is revealing. He said that “medical men strive manfully to keep up their 
knowledge of how the world of medicine moves on; but too often they are the first 
to accuse themselves of being unable to meet the duties of their daily calling.…” 
He went on to say, “The preparatory work in the study of medicine is so great, if 
adequately done, that but few can spare time for its thorough performance….” [9]

2 www.medinfo.cam.ac.uk/miu/papers/Hanka/THIM/default.htm
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could Knowledge adopTIon In healTh-
care Become nearly InsTanTaneous?

The speed at which definitive medi-
cal discoveries have broadly reached 
medical practice over the last two mil-
lennia has progressively increased, as 
shown in Figure 2 on the next page. 

Focusing on the last 150 years, in 
which the effects of industrialization 
and the information explosion have 
been most acute, the trajectory flat-
tens slightly but remains largely linear, 
as the figure shows. (An asymptotic fit 
yields an r2 of 0.73, whereas the linear 
fit is 0.83.) 

 Given that even the speed of light 
is finite, this trend will inevitably be  
asymptotic to the horizontal axis. Yet, 
if the linearity can be sufficiently 
maintained for a while, the next 20 
years could emerge as a special time 

for healthcare as the translation from medical knowledge discovery to widespread medi-
cal practice becomes nearly instantaneous.

The proximity of this trajectory to the axis occurs around the year 2025. In 
response to the dramatic computational progress observed with Moore’s Law and 
the growth in parallel and distributed computing architectures, Ray Kurzweil, in 
The Singularity Is Near, predicts that 2045 will be the year of the Singularity, when 
computers meet or exceed human computational ability and when their ability to 
recursively improve themselves can lead to an “intelligence explosion” that ulti-
mately affects all aspects of human culture and technology [10]. Mathematics de-
fines a “singularity” as a point at which an object changes its nature so as to attain 
properties that are no longer the expected norms for that class of object. Today, 
the dissemination path for medical information is complex and multi-faceted, in-
volving commercials, lectures, brochures, colleagues, and journals. In a world with 
nearly instantaneous knowledge translation, dissemination paths would become 
almost entirely digital and direct. 

Figure 1. 

The number of biomedical articles catalogued 
each year is increasing precipitously and is 
expected to surpass 1 million in 2012.



HEALTH AND WELLBEING6 0

Figure 2. 

While it took 2,300 years after the first report of angina for the condition to be commonly taught 
in medical curricula, modern discoveries are being disseminated at an increasingly rapid pace. 
Focusing on the last 150 years, the trend still appears to be linear, approaching the axis around 2025.



6 1THE FOURTH PARADIGM

While the ideas around a technological singularity remain controversial,3 the 
authors refer to this threshold moment, when medical knowledge becomes “liquid” 
and its flow from research to practice (“bench to bedside”) becomes frictionless 
and immediate, as the “Healthcare Singularity.”

The promIses of a posT–healThcare sIngularITy world

Rofecoxib (Vioxx) was approved as safe and effective by the U.S. Food and Drug 
Administration (FDA) on May 20, 1999. On September 30, 2004, Merck withdrew 
it from the market because of concerns about the drug’s potential cardiovascular 
side effects. The FDA estimates that in the 5 years that the drug was on the market, 
rofecoxib contributed to more than 27,000 heart attacks or sudden cardiac deaths 
and as many as 140,000 cases of heart disease [11]. Rofecoxib was one of the most 
widely used medications ever withdrawn; over 80 million people had taken the 
drug, which was generating US$2.5 billion a year in sales.4

Today, it is reasonable to expect that after an FDA announcement of a drug’s 
withdrawal from the market, patients will be informed and clinicians will imme-
diately prescribe alternatives. But current channels of dissemination delay that re-
sponse. In a post–Healthcare Singularity world, that expectation will be met. To 
enable instantaneous translation, journal articles will consist of not only words, but 
also bits. Text will commingle with code, and articles will be considered complete 
only if they include algorithms. 

With this knowledge automation, every new medication will flow through a cas-
cade of post-market studies that are independently created and studied by leading 
academics across the oceans (effectively “crowdsourcing” quality assurance). Sus-
picious observations will be flagged in real time, and when certainty is reached, 
unsafe medications will disappear from clinical prescription systems in a rippling 
wave across enterprises and clinics. The biomedical information explosion will at 
last be contained and harnessed.

Other scenarios of knowledge dissemination will be frictionless as well: medical 
residents can abandon the handbooks they have traditionally carried that list drugs 
of choice for diseases, opting instead for clinical systems that personalize health-
care and geographically regionalize treatments based on drug sensitivities that are 
drawn in real time from the local hospital microbiology lab and correlated with the 
patient’s genomic profile.

3 http://en.wikipedia.org/wiki/Technological_singularity
4 http://en.wikipedia.org/wiki/Rofecoxib
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Knowledge discovery will also be enhanced. Practitioners will have access to 
high-performance, highly accurate databases of patient records to promote preven-
tive medical care, discover successful treatment patterns [12, 13], and reduce medi-
cal errors. Clinicians will be able to generate cause-effect hypotheses, run virtual 
clinical trials to deliver personalized treatment plans, and simulate interventions 
that can prevent pandemics.

Looking farther ahead, the instantaneous flow of knowledge from research 
centers to the front lines of clinical care will speed the treatment and prevention 
of newly emerging diseases. The moment that research labs have identified the 
epitopes to target for a new disease outbreak, protein/DNA/RNA/lipid synthesizers 
placed in every big hospital around the world will receive instructions, remotely 
transmitted from a central authority, directing the on-site synthesis of vaccines or 
even directed antibody therapies for rapid administration to patients. 

progress Toward The healThcare sIngularITy 

Companies such as Microsoft and Google are building new technologies to enable 
data and knowledge liquidity. Microsoft HealthVault and Google Health are Inter-
net based, secure, and private “consumer data clouds” into which clinical patient 
data can be pushed from devices and other information systems. Importantly, once 
the data are in these “patient clouds,” they are owned by the patient. Patients them-
selves determine what data can be redistributed and to whom the data may be 
released. 

A February 2009 study by KLAS reviewed a new class of emerging data aggrega-
tion solutions for healthcare. These enterprise data aggregation solutions (“enter-
prise data clouds”) unify data from hundreds or thousands of disparate systems 
(such as MEDSEEK, Carefx, dbMotion, Medicity, and Microsoft Amalga).5 These 
platforms are beginning to serve as conduits for data to fill patient data clouds. A 
recent example is a link between New York-Presbyterian’s hospital-based Amalga 
aggregation system and its patients’ HealthVault service.6 Through these links, data 
can flow almost instantaneously from hospitals to patients.

The emergence of consumer data clouds creates new paths by which new medical 
knowledge can reach patients directly. On April 21, 2009, Mayo Clinic announced 
the launch of the Mayo Clinic Health Advisory, a privacy- and security-enhanced 

5 www.klasresearch.com/Klas/Site/News/PressReleases/2009/Aggregation.aspx
6 http://chilmarkresearch.com/2009/04/06/healthvault-ny-presbyterian-closing-the-loop-on-care
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online application that offers individualized health guidance and recommendations 
built with the clinical expertise of Mayo Clinic and using secure and private patient 
health data from Microsoft HealthVault.7 Importantly, new medical knowledge and 
recommendations can be computationally instantiated into the advisory and ap-
plied virtually instantaneously to patients worldwide.

New technology is bridging research labs and clinical practice. On April 28, 
2009, Microsoft announced the release of Amalga Life Sciences, an extension to 
the data-aggregation class of products for use by scientists and researchers. Through 
this release, Microsoft is offering scalable “data aggregation and liquidity” solutions 
that link three audiences: patients, providers, and researchers. Companies such as 
Microsoft are building the “pipeline” to allow data and knowledge to flow through 
a semantically interoperable network of patients, providers, and researchers. These 
types of connectivity efforts hold the promise of effectively instantaneous dissemi-
nation of medical knowledge throughout the healthcare system. The Healthcare 
Singularity could be the gateway event to a new Age of Semantic Medicine.

Instantaneous knowledge translation in medicine is not only immensely impor-
tant, highly desirable, valuable, and achievable in our lifetimes, but perhaps even 
inevitable. 
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H E ALTH AN D WELLBE I N G

Bringing intelligent healthcare informatics to bear 
on the dual problems of reducing healthcare costs and 
improving quality and outcomes is a challenge even in 
countries with a reasonably developed technology infra-

structure. Much of medical knowledge and information remains 
in paper form, and even where it is digitized, it often resides in 
disparate datasets and repositories and in diverse formats. Data 
sharing is uncommon and frequently hampered by the lack of 
foolproof de-identification for patient privacy. All of these issues  
impede opportunities for data mining and analysis that would en-
able better predictive and preventive medicine.

Developing countries face these same issues, along with the 
compounding effects of economic and geopolitical constraints, 
transportation and geographic barriers, a much more limited clin-
ical workforce, and infrastructural challenges to delivery. Simple, 
high-impact deliverable interventions such as universal childhood 
immunization and maternal childcare are hampered by poor 
monitoring and reporting systems. A recent Lancet article by 
Christopher Murray’s group concluded that “immunization cover-
age has improved more gradually and not to the level suggested by 
countries’ official reports of WHO and UNICEF estimates. There 
is an urgent need for independent and contestable monitoring 
of health indicators in an era of global initiatives that are target- 
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oriented and disburse funds based on 
performance.” [1] 

Additionally, the most recent report  
on the United Nations Millennium De-
velopment Goals notes that “pneumo-
nia kills more children than any other 
disease, yet in developing countries, the 
proportion of children under five with 
suspected pneumonia who are taken to 
appropriate health-care providers re-
mains low.” [2] Providing reliable data 
gathering and diagnostic decision sup-
port at the point of need by the best-
trained individual available for care is 
the goal of public health efforts, but tools 

to accomplish this have been expensive, unsupportable, and inaccessible.
Below, we elaborate on the challenges facing healthcare delivery in develop-

ing countries and describe computer- and cell phone–based technology we have 
created to help address these challenges. At the core of this technology is the  
NxOpinion Knowledge Manager1 (NxKM), which has been under development at 
the Robertson Research Institute since 2002. This health platform includes a medi-
cal knowledge base assembled from the expertise of a large team of experts in the 
U.S. and developing countries, a diagnostic engine based on Bayesian networks, 
and cell phones for end-user interaction.

scale up, scale ouT, and scale In

One of the biggest barriers to deployment of a decision support or electronic health 
record system is the ability to scale. The term “scale up” refers to a system’s ability 
to support a large user base—typically hundreds of thousands or millions. Most 
systems are evaluated within a narrower scope of users. “Scale out” refers to a sys-
tem’s ability to work in multiple countries and regions as well as the ability to work 
across disease types. Many systems work only for one particular disease and are not 
easily regionalized—for example, for local languages, regulations, and processes. 
“Scale in” refers to the ability of a system to capture and benchmark against a single 

1 www.nxopinion.com/product/knowledgemng 

The NxOpinion health platform being used by  
Indian health extension workers.
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individual. Most systems assume a generic patient and fail to capture unique char-
acteristics that can be effective in individualized treatment.

With respect to scaling up, NxKM has been tested in India, Congo, Dominican 
Republic, Ghana, and Iraq. It has also been tested in an under-served inner-city com-
munity in the United States. In consultation with experts in database scaling, the 
architecture has been designed to combine multiple individual databases with a cen-
tral de-identified database, thus allowing, in principle, unlimited scaling options.

As for scaling out to work across many disease types and scaling in to provide 
accurate individual diagnoses, the amount of knowledge required is huge. For ex-
ample, INTERNIST-1, an expert system for diagnosis in internal medicine, con-
tains approximately 250,000 relationships among roughly 600 diseases and 4,000 
findings [3]. Building on the earlier work of one of us (Heckerman), who devel-
oped efficient methods for assessing and representing expert medical knowledge 
via a Bayesian network [4], we have brought together medical literature, textbook  
information, and expert panel recommendations to construct a growing knowledge 
base for NxKM, currently including over 1,000 diseases and over 6,000 discrete 
findings. The system also scales in by allowing very fine-grained data capture. Each 
finding within an individual health record or diagnostic case can be tracked and 
monitored. This level of granularity allows for tremendous flexibility in determining 
factors relating to outcome and diagnostic accuracy.

With regard to scaling out across a region, a challenge common to developing 
countries is the exceptionally diverse and region-specific nature of medical condi-
tions. For example, a disease that is common in one country or region might be rare 
in another. Whereas rule-based expert systems must be completely reengineered in 
each region, the modular nature of the NxKM knowledge base, which is based on 
probabilistic similarity networks [4], allows for rapid customization to each region. 
The current incarnation of NxKM uses region-specific prevalence from expert esti-
mates. It can also update prevalence in each region as it is used in the field. NxKM 
also incorporates a modular system that facilitates customization to terms, treat-
ments, and language specific to each region. When region-specific information is 
unknown or unavailable, a default module is used until such data can be collected 
or identified.

dIagnosTIc accuracy and effIcIency

Studies indicate that even highly trained physicians overestimate their diagnos-
tic accuracy. The Institute of Medicine recently estimated that 44,000 to 98,000  
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preventable deaths occur each year due to medical error, many due to misdiag-
nosis [5]. In developing countries, the combined challenges of misdiagnoses  
and missing data not only reduce the quality of medical care for individuals but 
lead to missed outbreak recognition and flawed population health assessment  
and planning.

Again, building on the diagnostic methodology from probabilistic similarity  
networks [4], NxKM employs a Bayesian reasoning engine that yields accurate di-
agnoses. An important component of the system that leads to improved accuracy is 
the ability to ask the user additional questions that are likely to narrow the range 
of possible diagnoses. NxKM has the ability to ask the user for additional findings 
based on value-of-information computations (such as a cost function) [4]. Also im-
portant for clinical use is the ability to identify the confidence in the diagnosis (i.e., 
the probability of the most likely diagnosis). This determination is especially useful 
for less-expert users of the system, which is important for improving and supervis-
ing the care delivered by health extension workers (HEWs) in developing regions 
where deep medical knowledge is rare.

geTTIng healThcare To where IT Is needed: The lasT mIle

Another key challenge is getting diagnostics to where they are most needed. Be-
cause of their prevalence in developing countries, cell phones are a natural choice 
for a delivery vehicle. Indeed, it is believed that, in many such areas, access to cell 
phones is better than access to clean water. For example, according to the market 
database Wireless Intelligence,2 80 percent of the world’s population was within 
range of a cellular network in 2008. And figures from the International Telecom-
munication Union3 show that by the end of 2006, 68 percent of the world’s mobile 
subscriptions were in developing countries. More recent data from the Interna-
tional Telecommunications Union shows that between 2002 and 2007, cellular 
subscription was the most rapid growth area for telecommunication in the world, 
and that the per capita increase was greatest in the developing world.4

Consequently, we have developed a system wherein cell phones are used to  
access a centrally placed NxKM knowledge base and diagnostic engine implement-
ed on a PC. We are now testing the use of this system with HEWs in rural India. In 
addition to providing recommendations for medical care to the HEWs, the phone/

2 www.wirelessintelligence.com
3 www.itu.int
4 www.itu.int/ITU-D/ict/papers/2009/7.1%20teltscher_IDI%20India%202009.pdf
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central-PC solution can be used to create portable personal health records. One of 
our partner organizations, School Health Annual Report Programme (SHARP), 
will use it to screen more than 10 million Indian schoolchildren in 2009, creating 
a unique virtual personal health record for each child. 

Another advantage of this approach is that the data collected by this system 
can be used to improve the NxKM knowledge base. For example, as mentioned 
above, information about region-specific disease prevalence is important for ac-
curate medical diagnosis. Especially important is time-critical information about 
the outbreak of a disease in a particular location. As the clinical application is 
used, validated disease cases, including those corresponding to a new outbreak, are  
immediately available to NxKM. In addition, individual diagnoses can be moni-
tored centrally. If the uploaded findings of an individual patient are found to yield a 
low-confidence diagnosis, the patient can be identified for follow-up.

The user InTerface

A challenge with cellular technology is the highly constrained user interface and 
the difficulty of entering data using a relatively small screen and keypad. Our  
system simplifies the process in a number of ways. First, findings that are com-
mon for a single location (e.g., facts about a given village) are prepopulated into the 
system. Also, as mentioned above, the system is capable of generating questions—
specifically, simple multiple-choice questions—after only basic information such as 
the chief complaint has been entered. In addition, questions can be tailored to the  
organization, location, or skill level of the HEW user.

It is also important that the user interface be independent of the specific device 
hardware because users often switch between phones of different designs. Our in-
terface application sits on top of a middle-layer platform that we have implemented 
for multiple devices. 

In addition to simple input, the interface allows easy access to important bits of 
information. For example, it provides a daily summary of patients needing care, 
including their diagnosis, village location, and previous caregivers. 

daTa-sharIng soluTIons

Even beyond traditional legacy data silos (such as EPIC and CERNER) [5], bar-
riers to sharing critical public health data still exist—including concerns about  
privacy and sovereignty. Data availability can also be limited regionally (e.g., in  
India and South Africa), by organizations (e.g., the World Health Organization,  
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NxOpinion’s innovative approach, which shows data when you want it, how you want 
it, and where you want it, using artificial intelligence.
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World Vision, or pharmaceutical companies), or by providers (e.g., insurance com-
panies and medical provider groups). Significant public health value resides in each 
of these datasets, and efforts should be made to overcome the barriers to gathering 
data into shared, de-identified global databases. Such public datasets, while useful 
on their own, also add significant value to proprietary datasets, providing valuable 
generic context to proprietary information.

NxKM imports, manages, and exports data via publish sets. These processes  
allow various interest groups (governments, public health organizations, primary 
care providers, small hospitals, laboratory and specialty services, and insurance 
providers) to share the same interactive de-identified (privacy-preserving) global 
database while maintaining control of proprietary and protected data.

looKIng forward

Several challenges remain. While better educated HEWs are able to use these 
data collection and diagnostic decision support tools readily, other HEWs, such as  
Accredited Social Health Activists (ASHAs) and other front-line village workers, 
are often illiterate or speak only a local dialect. We are exploring two potential 
solutions—one that uses voice recognition technology and another that allows 
a user to answer multiple-choice questions via the cell phone’s numeric keypad. 
Voice recognition technology provides added flexibility in input, but—at least so 
far—it requires the voice recognizer to be trained by each user.

Another challenge is unique and reproducible patient identification—verifi-
cation that the subject receiving treatment is actually the correct patient—when 
there is no standard identification system for most under-served populations. Voice  
recognition combined with face recognition and newer methods of biometrics, 
along with a corroborating GPS location, can help ensure that the patient who 
needs the care is the one actually receiving treatment.

Another barrier is data integrity. For example, most rural individuals will re-
port diagnoses that have not been substantiated by qualified medical personnel and 
could be erroneous. We have attempted to mitigate this issue by using an inference 
engine that allows for down-weighting of unsubstantiated evidence.

Deploying systems that work anywhere in the world can lead to the creation 
of a massive amount of patient information. Storing, reconciling, and then ac-
cessing that information in the field, all while maintaining appropriate privacy 
and security, are exceptionally challenging when patient numbers are in the mil-
lions (instead of tens of thousands, as with most current electronic health record  
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systems). Further, feeding verified data on this scale back into the system to im-
prove its predictive capability while maintaining the ability to analyze and retrieve 
specific segments (data mine) remains difficult. 

A final, and perhaps the greatest, obstacle is that of cooperation. If organiza-
tions, governments, and companies are willing to share a de-identified global data-
base while protecting and owning their own database, medical science and health-
care can benefit tremendously. A unified database that allows integration across 
many monitoring and evaluation systems and databases should help in quickly and 
efficiently identifying drug resistance or outbreaks of disease and in monitoring 
the effectiveness of treatments and healthcare interventions. The global database 
should support data queries that guard against the identification of individuals and 
yet provide sufficient information for statistical analyses and validation. Such tech-
nology is beginning to emerge (e.g., [6]), but the daunting challenge of finding a 
system of rewards that encourages such cooperation remains.

summary

We have developed and are beginning to deploy a system for the acquisition, analy-
sis, and transmission of medical knowledge and data in developing countries. The 
system includes a centralized component based on PC technology that houses med-
ical knowledge and data and has real-time diagnostic capabilities, complemented 
by a cell phone–based interface for medical workers in the field. We believe that 
such a system will lead to improved medical care in developing countries through 
improved diagnoses, the collection of more accurate and timely data across more 
individuals, and the improved dissemination of accurate and timely medical knowl-
edge and information. 

When we stop and think about how a world of connected personal health rec-
ords can be used to improve medicine, we can see that the potential impact is stag-
gering. By knowing virtually every individual who exists, the diseases affecting that 
person, and where he or she is located; by improving data integrity; and by collect-
ing the data in a central location, we can revolutionize medicine and perhaps even 
eradicate more diseases. This global system can monitor the effects of various hu-
manitarian efforts and thereby justify and tailor efforts, medications, and resources 
to specific areas. It is our hope that a system that can offer high-quality diagnoses as 
well as collect and rapidly disseminate valid data will save millions of lives. Alerts 
and responses can become virtually instantaneous and can thus lead to the identi-
fication of drug resistance, outbreaks, and effective treatments in a fraction of the 
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time it takes now. The potential for empowering caregivers in developing countries 
though a global diagnostic and database system is enormous.
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he brain, the seat of our cognitive abilities, is perhaps 
the most complex puzzle in all of biology. Every second 
in the human brain, billions of cortical nerve cells trans-
mit billions of messages and perform extraordinarily 

complex computations. How the brain works—how its function 
follows from its structure—remains a mystery.

The brain’s vast numbers of nerve cells are interconnected at 
synapses in circuits of unimaginable complexity. It is largely as-
sumed that the specificity of these interconnections underlies our 
ability to perceive and classify objects, our behaviors both learned 
(such as playing the piano) and intrinsic (such as walking), and 
our memories—not to mention controlling lower-level functions 
such as maintaining posture and even breathing. At the highest 
level, our emotions, our sense of self, our very consciousness are 
entirely the result of activities in the nervous system.

At a macro level, human brains have been mapped into re-
gions that can be roughly associated with specific types of activi-
ties. However, even this building-block approach is fraught with 
complexity because often many parts of the brain participate in 
completing a task. This complexity arises especially because most 
behaviors begin with sensory input and are followed by analysis, 
decision making, and finally a motor output or action. 

At the microscopic level, the brain comprises billions of neu-

Discovering the Wiring  
Diagram of the Brain
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rons, each connected to other neurons by up to several thousand synaptic connec-
tions. Although the existence of these synaptic circuits has been appreciated for 
over a century, we have no detailed circuit diagrams of the brains of humans or any 
other mammals. Indeed, neural circuit mapping has been attempted only once, and 
that was two decades ago on a small worm with only 300 nerve cells. The central 
stumbling block is the enormous technical difficulty associated with such mapping. 
Recent technological breakthroughs in imaging, computer science, and molecular 
biology, however, allow a reconsideration of this problem. But even if we had a wir-
ing diagram, we would need to know what messages the neurons in the circuit are 
passing—not unlike listening to the signals on a computer chip. This represents 
the second impediment to understanding: traditional physiological methods let us 
listen to only a tiny fraction of the nerves in the circuit.

To get a sense of the scale of the problem, consider the cerebral cortex of the 
human brain, which contains more than 160 trillion synaptic connections. These 
connections originate from billions of neurons. Each neuron receives synaptic con-
nections from hundreds or even thousands of different neurons, and each sends 
information via synapses to a similar number of target neurons. This enormous 
fan-in and fan-out can occur because each neuron is geometrically complicated, 
possessing many receptive processes (dendrites) and one highly branched outflow 
process (an axon) that can extend over relatively long distances.

One might hope to be able to reverse engineer the circuits in the brain. In other 
words, if we could only tease apart the individual neurons and see which one is 
connected to which and with what strength, we might at least begin to have the 
tools to decode the functioning of a particular circuit. The staggering numbers 
and complex cellular shapes are not the only daunting aspects of the problem. The 
circuits that connect nerve cells are nanoscopic in scale. The density of synapses in 
the cerebral cortex is approximately 300 million per cubic millimeter. 

Functional magnetic resonance imaging (fMRI) has provided glimpses into the 
macroscopic 3-D workings of the brain. However, the finest resolution of fMRI is 
approximately 1 cubic millimeter per voxel—the same cubic millimeter that can 
contain 300 million synapses. Thus there is a huge amount of circuitry in even the 
most finely resolved functional images of the human brain. Moreover, the size of 
these synapses falls below the diffraction-limited resolution of traditional optical 
imaging technologies. 

Circuit mapping could potentially be amenable to analysis based on color cod-
ing of neuronal processes [1] and/or the use of techniques that break through the  
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diffraction limit [2]. Presently, the gold standard for analyzing synaptic connections 
is to use electron microscopy (EM), whose nanometer (nm) resolution is more than 
sufficient to ascertain the finest details of neural connections. But to map circuits, 
one must overcome a technical hurdle: EM typically images very thin sections (tens 
of nanometers in thickness), so reconstructing a volume requires a “serial recon-
struction” whereby the image information from contiguous slices of the same vol-
ume is recomposed into a volumetric dataset. There are several ways to generate 
such volumetric data (see, for example, [3-5]), but all of these have the potential to 
generate astonishingly large digital image data libraries, as described next.

some numBers

If one were to reconstruct by EM all the synaptic circuitry in 1 cubic mm of brain 
(roughly what might fit on the head of a pin), one would need a set of serial images 
spanning a millimeter in depth. Unambiguously resolving all the axonal and den-
dritic branches would require sectioning at probably no more than 30 nm. Thus the 
1 mm depth would require 33,000 images. Each image should have at least 10 nm 
lateral resolution to discern all the vesicles (the source of the neurotransmitters) 
and synapse types. A square-millimeter image at 5 nm resolution is an image that 
has ~4 x1010 pixels, or 10 to 20 gigapixels. So the image data in 1 cubic mm will be 
in the range of 1 petabyte (250 ~ 1,000,000,000,000,000 bytes). The human brain 
contains nearly 1 million cubic mm of neural tissue.

some successes To daTe

Given this daunting task, one is tempted to give up and find a simpler problem. 
However, new technologies and techniques provide glimmers of hope. We are pur-
suing these with the ultimate goal of creating a “connectome”—a complete circuit 
diagram of the brain. This goal will require intensive and large-scale collaborations 
among biologists, engineers, and computer scientists. 

Three years ago, the Reid and Lichtman labs began working on ways to auto-
mate and accelerate large-scale serial-section EM. Focusing specifically on large 
cortical volumes at high resolution, the Reid group has concentrated on very high 
throughput as well as highly automated processes. So far, their work has been pub-
lished only in abstract form [3], but they are confident about soon having the first 
10 terabytes of volumetric data on fine-scale brain anatomy. Physiological experi-
ments can now show the function of virtually every neuron in a 300 μm cube. 
The new EM data has the resolution to show virtually every axon, dendrite, and 
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synapse—the physical connections that underlie neuronal function. 
The problem of separating and tracking the individual neurons within the vol-

ume remains. However, some successes have already been achieved using exotic 
means. Lichtman’s lab found a way to express various combinations of red, green, 
and blue fluorescent proteins in genetically engineered mice. These random com-
binations presently provide about 90 colors or combinations of colors [1]. With this 
approach, it is possible to track individual neurons as they branch to their eventual 
synaptic connections to other neurons or to the end-organs in muscle. The multi-
color labeled nerves (dubbed “brainbow”), shown in Figure 1, are reminiscent of 
the rainbow cables in computers and serve the same purpose: to disambiguate 
wires traveling over long distances. 

Because these colored labels are present in the living mouse, it is possible to 
track synaptic wiring changes by observing the same sites multiple times over min-
utes, days, or even months. 

Reid’s lab has been able to stain neurons of rat and cat visual cortices such that 
they “light up” when activated. By stimulating the cat with lines of different orien-
tations, they have literally been able to see which neurons are firing, depending on 
the specific visual stimulus. By comparing the organization of the rat’s visual cortex 
to that of the cat, they have found that while a rat’s neurons appear to be randomly 
organized based on the orientation of the visual stimulus, a cat’s neurons exhibit 
remarkable structure. (See Figure 2.)

Achieving the finest resolution using EM requires imaging very thin slices of 
neural tissue. One method begins with a block of tissue; after each imaging pass, a 

Figure 1. 

Brainbow images showing individual neurons fluorescing in different colors. By tracking the neu-
rons through stacks of slices, we can follow each neuron’s complex branching structure to create 
the treelike structures in the image on the right.
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thin slice is removed (and destroyed) from the block, and then the process is repeat-
ed. Researchers in the Lichtman group at Harvard have developed a new device—a 
sort of high-tech lathe that they are calling an Automatic Tape-Collecting Lathe 
Ultramicrotome (ATLUM)—that can allow efficient nanoscale imaging over large 
tissue volumes. (See Figure 3 on the next page.)

The ATLUM [3] automatically sections an embedded block of brain tissue into 
thousands of ultrathin sections and collects these on a long carbon-coated tape for 
later staining and imaging in a scanning electron microscope (SEM). Because the 
process is fully automated, volumes as large as tens of cubic millimeters—large 
enough to span entire multi-region neuronal circuits—can be quickly and reliably 
reduced to a tape of ultrathin sections. SEM images of these ATLUM-collected sec-
tions can attain lateral resolutions of 5 nm or better—sufficient to image individual 
synaptic vesicles and to identify and trace all circuit connectivity.

The thin slices are images of one small region at a time. Once a series of individu-
al images is obtained, these images must be stitched together into very large images 

Figure 2. 

Neurons in a visual cortex stained in vivo with a calcium-sensitive dye. Left: A 3-D reconstruction 
of thousands of neurons in a rat visual cortex, obtained from a stack of images (300 μm on a side). 
The neurons are color coded according to the orientation of the visual stimulus that most excited 
them. Center: A 2-D image of the plane of section from the left panel. Neurons that responded to 
different stimulus orientations (different colors) are arranged seemingly randomly in the cortex.  
Inset: Color coding of stimulus orientations. Right: By comparison, the cat visual cortex is 
extremely ordered. Neurons that responded preferentially to different stimulus orientations are 
segregated with extraordinary precision. This image represents a complete 3-D functional map  
of over 1,000 neurons in a 300x300x200 μm volume in the visual cortex [6, 7].
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and possibly stacked into volumes. At Microsoft Research, work has proceeded to 
stitch together and then interactively view images containing billions of pixels.1 

Once these gigapixel-size images are organized into a hierarchical pyramid, the HD 
View application can stream requested imagery over the Web for viewing.2 This al-
lows exploration of both large-scale and very fine-scale features. Figure 4 shows a 
walkthrough of the result.

Once the images are captured and stitched, multiple slices of a sample must be 
stacked to assemble them into a coherent volume. Perhaps the most difficult task 
at that point is extracting the individual strands of neurons. Work is under way at 
Harvard to provide interactive tools to aid in outlining individual “processes” and 
then tracking them slice to slice to pull out each dendritic and axonal fiber [8, 9]. 
(See Figure 5.) Synaptic interfaces are perhaps even harder to find automatically; 
however, advances in both user interfaces and computer vision give hope that the 
whole process can be made tractable.

Decoding the complete connectome of the human brain is one of the great 
challenges of the 21st century. Advances at both the biological level and technical 
level are certain to lead to new successes and discoveries, and they will hopefully 
help answer fundamental questions about how our brain performs the miracle of 
thought.

1 http://research.microsoft.com/en-us/um/redmond/groups/ivm/ICE
2 http://research.microsoft.com/en-us/um/redmond/groups/ivm/HDView

Figure 3. 

The Automatic Tape-Collecting 
Lathe Ultramicrotome (ATLUM), 
which can allow efficient  
nanoscale imaging over large 
tissue volumes.

Knife 
advances

This tissue ribbon is collected 
by a submerged conveyor belt

Tissue rotates

These synchronized motions produce 
a spiral cut through the tissue block, 
yielding a continuous ribbon of tissue 
in the knife’s water boat

Knife’s water
level adjusted via
this inlet tube
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Figure 5. 

NeuroTrace allows neuroscientists to interactively explore and segment neural processes in high-
resolution EM data.

Figure 4. 

HD View allows interactive exploration of this 2.5-gigapixel image. 
Left: A slice of neural tissue. The large gray feature in the center 
is a nucleus of a neuron. Center: A close-up of a capillary and my-
elinated axon. Right: Close-up myelin layers encircling the cross-
section of an axon. Bottom: A zoomed-in view showing tiny vesicles 
surrounding a synaptic connection between very fine structures.
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lthough great strides have been made in neurobiol-
ogy, we do not yet understand how the symphony of 
communication among neurons leads to rich, compe-
tent behaviors in animals. How do local interactions 

among neurons coalesce into the behavioral dynamics of nervous 
systems, giving animals their impressive abilities to sense, learn, 
decide, and act in the world? Many details remain cloaked in mys-
tery. We are excited about the promise of gaining new insights by 
applying computational methods, in particular machine learning 
and inference procedures, to generate explanatory models from 
data about the activities of populations of neurons. 

new Tools for neuroBIologIsTs

For most of the history of electrophysiology, neurobiologists have 
monitored the membrane properties of neurons of vertebrates and 
invertebrates by using glass micropipettes filled with a conduct-
ing solution. Mastering techniques that would impress the most 
expert of watchmakers, neuroscientists have fabricated glass elec-
trodes with tips that are often less than a micron in diameter, and 
they have employed special machinery to punch the tips into the 
cell bodies of single neurons—with the hope that the neurons will 
function as they normally do within larger assemblies. Such an ap-
proach has provided data about the membrane voltages and action 
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potentials of a single cell or just a handful of cells. 
However, the relationship between neurobiologists and data about nervous  

systems is changing. New recording machinery is making data available on the  
activity of large populations of neurons. Such data makes computational proce-
dures increasingly critical as experimental tools for unlocking new understanding 
about the connections, architecture, and overall machinery of nervous systems.

New opportunities for experimentation and modeling on a wider scale have be-
come available with the advent of fast optical imaging methods. With this approach, 
dyes and photomultipliers are used to track calcium levels and membrane potentials 
of neurons, with high spatial and temporal resolution. These high-fidelity optical re-
cordings allow neurobiologists to examine the simultaneous activity of populations 
of tens to thousands of neurons. In a relatively short time, data available about the 
activity of neurons has grown from a trickle of information gleaned via sampling of 
small numbers of neurons to large-scale observations of neuronal activity. 

Spatiotemporal datasets on the behaviors of populations of neurons pose tanta-
lizing inferential challenges and opportunities. The next wave of insights about the 
neurophysiological basis for cognition will likely come via the application of new 
kinds of computational lenses that direct an information-theoretic “optics” onto 
streams of spatiotemporal population data. 

We foresee that neurobiologists studying populations of neurons will one day 
rely on tools that serve as computational microscopes—systems that harness ma-
chine learning, reasoning, and visualization to help neuroscientists formulate and 
test hypotheses from data. Inferences derived from the spatiotemporal data stream-
ing from a preparation might even be overlaid on top of traditional optical views 
during experiments, augmenting those views with annotations that can help with 
the direction of the investigation. 

Intensive computational analyses will serve as the basis for modeling and vi-
sualization of the intrinsically high-dimensional population data, where multiple 
neuronal units interact and contribute to the activity of other neurons and as-
semblies, and where interactions are potentially context sensitive—circuits and 
flows might exist dynamically, transiently, and even simultaneously on the same 
neuronal substrate. 

compuTaTIon and complexITy

We see numerous opportunities ahead for harnessing fast-paced computations to 
assist neurobiologists with the science of making inferences from neuron popula-
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tion data. Statistical analyses have already been harnessed in studies of popula-
tions of neurons. For example, statistical methods have been used to identify and 
characterize neuronal activity as trajectories in large dynamical state spaces [1]. 
We are excited about employing richer machine learning and reasoning to induce 
explanatory models from case libraries of neuron population data. Computational 
procedures for induction can assist scientists with teasing insights from raw data 
on neuronal activity by searching over large sets of alternatives and weighing the 
plausibility of different explanatory models. The computational methods can be 
tasked with working at multiple levels of detail, extending upward from circuit-
centric exploration of local connectivity and functionality of neurons to potentially 
valuable higher-level abstractions of neuronal populations—abstractions that may 
provide us with simplifying representations of the workings of nervous systems. 

Beyond generating explanations from observations, inferential models can be 
harnessed to compute the expected value of information, helping neuroscientists to 
identify the best next test to perform or information to gather, in light of current 
goals and uncertainties. Computing the value of information can help to direct in-
terventional studies, such as guidance on stimulating specific units, clamping the 
voltage of particular cells, or performing selective modification of cellular activity 
via agonist and antagonist pharmacological agents. 

We believe that there is promise in both automated and interactive systems, 
including systems that are used in real-time settings as bench tools. Computational 
tools might one day even provide real-time guidance for probes and interventions 
via visualizations and recommendations that are dynamically generated during 
imaging studies. 

Moving beyond the study of specific animal systems, computational tools for an-
alyzing neuron population data will likely be valuable in studies of the construction 
of nervous systems during embryogenesis, as well as in comparing nervous systems 
of different species of animals. Such studies can reveal the changes in circuitry and 
function during development and via the pressures of evolutionary adaptation.

specTrum of sophIsTIcaTIon 

Neurobiologists study nervous systems of invertebrates and vertebrates across a 
spectrum of complexity. Human brains are composed of about 100 billion neurons 
that interact with one another via an estimated 100 trillion synapses. In contrast, 
the brain of the nematode, Caenorhabditis elegans (C. elegans), has just 302 neurons. 
Such invertebrate nervous systems offer us an opportunity to learn about the prin-
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ciples of neuronal systems, which can be generalized to more complex systems, 
including our own. For example, C. elegans has been a model system for research 
on the structure of neuronal circuits; great progress has been achieved in mapping 
the precise connections among its neurons.

Many neurobiologists choose to study simpler nervous systems even if they are 
motivated by questions about the neurobiological nature of human intelligence. 
Nervous systems are derived from a family tree of refinements and modifications, 
so it is likely that key aspects of neuronal information processing have been con-
served across brains of a range of complexities. While new abstractions, layers, and 
interactions may have evolved in more complex nervous systems, brains of different 
complexities likely rely on a similar neuronal fabric—and there is much that we do 
not know about that fabric. 

In work with our colleagues Ashish Kapoor, Erick Chastain, Johnson Apacible, 
Daniel Wagenaar, and Paxon Frady, we have been pursuing the use of machine 
learning, reasoning, and visualization to understand the machinery underlying de-
cision making in Hirudo, the European medicinal leech. We have been applying 
computational analyses to make inferences from optical data about the activity of 
populations of neurons within the segmental ganglia of Hirudo. The ganglia are 
composed of about 400 neurons, and optical imaging reveals the activity of approx-
imately 200 neurons at a time—all the neurons on one side of the ganglion. Several 
frames of the optical imaging of Hirudo are displayed in Figure 1. The brightness 

Figure 1. 

Imaging of a sequence of neurons of Hirudo  
in advance of its decision to swim or crawl. 
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of each of the imaged neurons represents the level of depolarization of the cells, 
which underlies the production of action potentials.

We are developing analyses and assembling tools in pursuit of our vision of devel-
oping computational microscopes for understanding the activity of neuronal popu-
lations and their relationship to behavior. In one approach, we generate graphical 
probabilistic temporal models that can predict the forthcoming behavior of Hirudo 
from a short window of analysis of population data. The models are generated by 
searching over large spaces of feasible models in which neurons, and abstractions 
of neurons, serve as random variables and in which temporal and atemporal de-
pendencies are inferred among the variables. The methods can reveal modules of 
neurons that appear to operate together and that can appear dynamically over the 
course of activity leading up to decisions by the animal. In complementary work, 
we are considering the role of neuronal states in defining trajectories through state 
spaces of a dynamical system. 

emergence of a compuTaTIonal mIcroscope

We have started to build interactive viewers and tools that allow scientists to ma-
nipulate inferential assumptions and parameters and to inspect implications vi-
sually. For example, sliders allow for smooth changes in thresholds for admitting 
connections among neurons and for probing strengths of relationships and mem-
bership in modules. We would love to see a world in which such tools are shared 
broadly among neuroscientists and are extended with learning, inference, and  
visualization components developed by the neuroscience community.

Figure 2 on the next page shows a screenshot of a prototype tool we call the 
MSR Computational Microscope, which was developed by Ashish Kapoor, Erick 
Chastain, and Eric Horvitz at Microsoft Research as part of a broader collabora-
tion with William Kristan at the University of California, San Diego, and Daniel  
Wagenaar at California Institute of Technology. The tool allows users to visualize 
neuronal activity over a period of time and then explore inferences about relation-
ships among neurons in an interactive manner. Users can select from a variety of 
inferential methods and specify modeling assumptions. They can also mark particu-
lar neurons and neuronal subsets as focal points of analyses. The view in Figure 2 
shows an analysis of the activity of neurons in the segmental ganglia of Hirudo. In-
ferred informational relationships among cells are displayed via highlighting of neu-
rons and through the generation of arcs among neurons. Such inferences can help to 
guide exploration and confirmation of physical connections among neurons. 
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Figure 2. 

Possible connections and 
clusters inferred from  

population data during 
imaging of Hirudo. 

Figure 3. 

Inferred informational  
relationships among  

neurons in a segmental  
ganglion of Hirudo.  

Measures of similarity  
of the dynamics of  

neuronal activity over  
time are displayed via  

arcs and clusters.
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Figure 3 shows another informational analysis that spatially clusters cells that 
behave in a similar manner in the ganglia of Hirudo over a set of trials. The analysis 
provides an early vision of how information-theoretic analyses might one day help 
neurobiologists to discover and probe interactions within and between neuronal 
subsystems. 

We are only at the start of this promising research direction, but we expect to 
see a blossoming of analyses, tools, and a broader sub-discipline that focuses on 
the neuroinformatics of populations of neurons. We believe that computational 
methods will lead us to effective representations and languages for understanding 
neuronal systems and that they will become essential tools for neurobiologists to 
gain insight into the myriad mysteries of sensing, learning, and decision making by 
nervous systems.
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T he quantity of available healthcare data is rising rap-
idly, far exceeding the capacity to deliver personal or pub-
lic health benefits from analyzing this data [1]. Three key 
elements of the rise are electronic health records (EHRs), 

biotechnologies, and scientific outputs. We discuss these in turn 
below, leading to our proposal for a unified modeling approach that 
can take full advantage of a data-intensive environment.

elecTronIc healTh records

Healthcare organizations around the world, in both low- and high-
resource settings, are deploying EHRs. At the community level, 
EHRs can be used to manage healthcare services, monitor the 
public’s health, and support research. Furthermore, the social ben-
efits of EHRs may be greater from such population-level uses than 
from individual care uses.

The use of standard terms and ontologies in EHRs is increas-
ing the structure of healthcare data, but clinical coding behavior 
introduces new potential biases. For example, the introduction of 
incentives for primary care professionals to tackle particular con-
ditions may lead to fluctuations in the amount of coding of new 
cases of those conditions [2]. On the other hand, the falling cost of 
devices for remote monitoring and near-patient testing is leading 
to more capture of objective measures in EHRs, which can provide 
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less biased signals but may create the illusion of an increase in disease prevalence 
simply due to more data becoming available. 

Some patients are beginning to access and supplement their own records or 
edit a parallel health record online [3]. The stewardship of future health records 
may indeed be more with individuals (patients/citizens/consumers) and communi-
ties (families/local populations etc.) than with healthcare organizations. In sum-
mary, the use of EHRs is producing more data-intensive healthcare environments 
in which substantially more data are captured and transferred digitally. Computa-
tional thinking and models of healthcare to apply to this wealth of data, however, 
have scarcely been developed.

BIoTechnologIes

Biotechnologies have fueled a boom in molecular medical research. Some tech-
niques, such as genome-wide analysis, produce large volumes of data without the 
sampling bias that a purposive selection of study factors might produce. Such data-
sets are thus more wide ranging and unselected than conventional experimental 
measurements. Important biases can still arise from artifacts in the biotechnical 
processing of samples and data, but these are likely to decrease as the technolo-
gies improve. A greater concern is the systematic error that lies outside the data 
landscape—for example, in a metabolomic analysis that is confounded by not con-
sidering the time of day or the elapsed time from the most recent meal to when the 
sample was taken. The integration of different scales of data, from molecular-level 
to population-level variables, and different levels of directness of measurement of 
factors is a grand challenge for data-intensive health science. When realistically 
complex multi-scale models are available, the next challenge will be to make them 
accessible to clinicians and patients, who together can evaluate the competing risks 
of different options for personalizing treatment.

scIenTIfIc ouTpuTs

The outputs of health science have been growing exponentially [4]. In 2009, a new 
paper is indexed in PubMed, the health science bibliographic system, on average 
every 2 minutes. The literature-review approach to managing health knowledge is 
therefore potentially overloaded. Furthermore, the translation of new knowledge 
into practice innovation is slow and inconsistent [5]. This adversely affects not only 
clinicians and patients who are making care decisions but also researchers who are 
reasoning about patterns and mechanisms. There is a need to combine the mining 
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of evidence bases with computational models for exploring the burgeoning data 
from healthcare and research.

Hypothesis-driven research and reductionist approaches to causality have served 
health science well in identifying the major independent determinants of health 
and the outcomes of individual healthcare interventions. (See Figure 1.) But they 
do not reflect the complexity of health. For example, clinical trials exclude as many 
as 80 percent of the situations in which a drug might be prescribed—for example, 
when a patient has multiple diseases and takes multiple medications [7]. Consider a 
newly licensed drug released for general prescription. Clinician X might prescribe 
the drug while clinician Y does not, which could give rise to natural experiments. 
In a fully developed data-intensive healthcare system in which the data from those 
experiments are captured in EHRs, clinical researchers could explore the outcomes 
of patients on the new drug compared with natural controls, and they could poten-
tially adjust for confounding and modifying factors. However, such adjustments 
might be extremely complex and beyond the capability of conventional models.

Figure 1. 

Conventional approaches based on statistical hypothesis testing artificially decompose the 
healthcare domain into numerous sub-problems. They thereby miss a significant opportunity for 
statistical “borrowing of strength.” Chronic obstructive pulmonary disease (COPD), cardiovascular 
disease (CVD), and lung cancer can be considered together as a “big three” [6].
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a unIfIed approach

We propose a unified modeling approach that can take full advantage of a data-
intensive environment without losing the realistic complexity of health. (See Fig-
ure 2.) Our approach relies on developments within the machine learning field over 
the past 10 years, which provide powerful new tools that are well suited to this 
challenge. Knowledge of outcomes, interventions, and confounding or modifying 
factors can all be captured and represented through the framework of probabilis-
tic graphical models in which the relevant variables, including observed data, are 
expressed as a graph [8]. Inferences on this graph can then be performed automati-
cally using a variety of algorithms based on local message passing, such as [9]. Com-
pared with classical approaches to machine learning, this new framework offers a 
deeper integration of domain knowledge, taken directly from experts or from the 
literature, with statistical learning. Furthermore, these automatic inference algo-
rithms can scale to datasets of hundreds of millions of records, and new tools such 

Figure 2. 

We propose a unified approach to healthcare modeling that exploits the growing statistical re-
sources of electronic health records in addition to the data collected for specific studies.
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as Infer.NET allow rapid development of solutions within this framework [10]. We 
illustrate the application of this approach with two scenarios.

In scenario 1, an epidemiologist is investigating the genetic and environmental 
factors that predispose some children to develop asthma. He runs a cohort study of 
1,000 children who have been followed for 10 years, with detailed environmental 
and physiological measures as well as data on over half a million of the 3 million 
genetic factors that might vary between individuals. The conventional epidemiol-
ogy approach might test predefined hypotheses using selected groups of genetic 
and other factors. A genome-wide scanning approach might also be taken to look 
for associations between individual genetic factors and simple definitions of health 
status (e.g., current wheeze vs. no current wheeze at age 5 years). Both of these 
approaches use relatively simple statistical models. An alternative machine learn-
ing approach might start with the epidemiologist constructing a graphical model 
of the problem space, consulting literature and colleagues to build a graph around 
the organizing principle—say, “peripheral airways obstruction.” This model better 
reflects the realistic complexity of asthma with a variety of classes of wheeze and 
other signs and symptoms, and it relates them to known mechanisms. Unsuper-
vised clustering methods are then used to explore how genetic, environmental, and 
other study factors influence the clustering into different groups of allergic sensi-
tization with respect to skin and blood test results and reports of wheezing. The 
epidemiologist can relate these patterns to biological pathways, thereby shaping 
hypotheses to be explored further.

In scenario 2, a clinical team is auditing the care outcomes for patients with 
chronic angina. Subtly different treatment plans of care are common, such as 
different levels of investigation and treatment in primary care before referral to 
specialist care. A typical clinical audit approach might debate the treatment plan, 
consult literature, examine simple summary statistics, generate some hypotheses, 
and perhaps test the hypotheses using simple regression models. An alternative ma-
chine learning approach might construct a graphical model of the assumed treat-
ment plan, via debate and reference to the literature, and compare this with discov-
ered network topologies in datasets reflecting patient outcomes. Plausible networks 
might then be used to simulate the potential effects of changes to clinical practice 
by running scenarios that change edge weights in the underlying graphs. Thus the 
families of associations in locally relevant data can be combined with evidence 
from the literature in a scenario-planning activity that involves clinical reasoning 
and machine learning.
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The fourTh paradIgm: healTh avaTars

Unified models clearly have the potential to influence personal health choices, clin-
ical practice, and public health. So is this a paradigm for the future?

The first paradigm of healthcare information might be considered to be the case 
history plus expert physician, formalized by Hippocrates more than 2,000 years 
ago and still an important part of clinical practice. In the second paradigm, a medi-
cal record is shared among a set of complementary clinicians, each focusing their 
specialized knowledge on the patient’s condition in turn. The third paradigm is  
evidence-based healthcare that links a network of health professionals with knowl-
edge and patient records in a timely manner. This third paradigm is still in the pro-
cess of being realized, particularly in regard to capturing the complexities of clini-
cal practice in a digital record and making some aspects of healthcare computable.

We anticipate a fourth paradigm of healthcare information, mirroring that of 
other disciplines, whereby an individual’s health data are aggregated from multiple 
sources and attached to a unified model of that person’s health. The sources can 
range from body area network sensors to clinical expert oversight and interpreta-
tion, with the individual playing a much greater part than at present in building and 
acting on his or her health information. Incorporating all of this data, the unified 
model will take on the role of a “health avatar”—the electronic representation of 
an individual’s health as directly measured or inferred by statistical models or clini-
cians. Clinicians interacting with a patient’s avatar can achieve a more integrated 
view of different specialist treatment plans than they do with care records alone. 

The avatar is not only a statistical tool to support diagnosis and treatment, but 
it is also a communication tool that links the patient and the patient’s elected net-
work of clinicians and other trusted caregivers—for what-if treatment discussions, 
for example. While initially acting as a fairly simple multi-system model, the health 
avatar could grow in depth and complexity to narrow the gap between avatar and 
reality. Such an avatar would not involve a molecular-level simulation of a human 
being (which we view as implausible) but would instead involve a unified statistical 
model that captures current clinical understanding as it applies to an individual 
patient.

This paradigm can be extended to communities, where multiple individual ava-
tars interact with a community avatar to provide a unified model of the community’s 
health. Such a community avatar could provide relevant and timely information for 
use in protecting and improving the health of those in the community. Scarce com-
munity resources could be matched more accurately to lifetime healthcare needs, 
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particularly in prevention and early intervention, to reduce the severity and/or du-
ration of illness and to better serve the community as a whole. Clinical, consumer, 
and public health services could interact more effectively, providing both social 
benefit and new opportunities for healthcare innovation and enterprise.

conclusIon

Data alone cannot lead to data-intensive healthcare. A substantial overhaul of meth-
odology is required to address the real complexity of health, ultimately leading to 
dramatically improved global public healthcare standards. We believe that machine 
learning, coupled with a general increase in computational thinking about health, 
can be instrumental. There is arguably a societal duty to develop computational 
frameworks for seeking signals in collections of health data if the potential benefit 
to humanity greatly outweighs the risk. We believe it does.
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n a recent paper, nobel laureate paul nurse calls for a bet-
ter understanding of living organisms through “both the  
development of the appropriate languages to describe infor-
mation processing in biological systems and the generation  

of more effective methods to translate biochemical descriptions 
into the functioning of the logic circuits that underpin biological 
phenomena.” [1]

The language that Nurse wishes to see is a formal language 
that can be automatically translated into machine executable 
code and that enables simulation and analysis techniques for 
proving properties of biological systems. Although there are 
many approaches to the formal modeling of living systems, only 
a few provide executable descriptions that highlight the mecha-
nistic steps that make a system move from one state to another 
[2]. Almost all the techniques related to mathematical modeling 
abstract from these individual steps to produce global behavior, 
usually averaged over time.

Computer science provides the key elements to describe mecha-
nistic steps: algorithms and programming languages [3]. Following 
the metaphor of molecules as processes introduced in [4], process 
calculi have been identified as a promising tool to model biological 
systems that are inherently complex, concurrent, and driven by 
the interactions of their subsystems.

Visualization in  
Process Algebra Models  

of Biological Systems
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Causality is a key difference between language-based modeling approaches and 
other techniques. In fact, causality in concurrent languages is strictly related to the 
notion of concurrency or independence of events, which makes causality substan-
tially different from temporal ordering. An activity A causes an activity B if A is a 
necessary condition for B to happen and A influences the activity of B—i.e., there is a 
flow of information from A to B. The second part of the condition defining causality 
makes clear the distinction between precedence (related only to temporal ordering) 
and causality (a subset of the temporal ordering in which the flow of information is 
also considered) [5]. As a consequence, the list of the reactions performed by a sys-
tem does not provide causal information but only temporal information. It is there-
fore mandatory to devise new modeling and analysis tools to address causality.

Causality is a key issue in the analysis of complex interacting systems because it 
helps in dissecting independent components and simplifying models while also al-
lowing us to clearly identify cross-talks between different signaling cascades. Once 
the experimentalist observes an interesting event in a simulation, it is possible to 
compact the previous history of the system, exposing only the preceding events 
that caused the interesting one. This can give precise hints about the causes of a 
disease, the interaction of a drug with a living system (identifying its efficacy and 
its side effects), and the regulatory mechanisms of oscillating behaviors.

Causality is a relationship between events, and as such it is most naturally stud-
ied within discrete models, which are in turn described via algorithmic model-
ing languages. Although many modeling languages have been defined in computer 
science to model concurrent systems, many challenges remain to building algo-
rithmic models for the system-level understanding of biological processes. These 
challenges include the relationship between low-level local interactions and emer-
gent high-level global behavior; the incomplete knowledge of the systems under 
investigation; the multi-level and multi-scale representations in time, space, and 
size; and the causal relations between interactions and the context awareness of 
the inner components. Therefore, the modeling formalisms that are candidates to 
propel algorithmic systems biology should be complementary to and interoperable 
with mathematical modeling. They should address parallelism and complexity, be 
algorithmic and quantitative, express causality, and be interaction driven, compos-
able, scalable, and modular.

language vIsualIzaTIon

A fundamental issue in the adoption of formal languages in biology is their  
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usability. A modeling language must be understandable by biologists so they can 
relate it to their own informal models and to experiments. 

One attempt by biologists to connect formal languages and informal descrip-
tions of systems involved the use of a constrained natural language organized in the 
form of tables that collect all the information related to the structure and dynamic 
of a system. This narrative representation is informative and structured enough to 
be compiled into formal description that is amenable to simulation and analysis  
[6, 7]. Although the narrative modeling style is not yet visual, it is certainly more 
readable and corresponds better to the intuition of biologists than a formal (pro-
gramming) language. 

The best way to make a language understandable to scientists while also helping 
to manage complexity is to visualize the language. This is harder than visualizing 
data or visualizing the results of simulations because a language implicitly describes 
the full kinetics of a system, including the dynamic relationships between events. 
Therefore, language visualization must be dynamic, and possibly reactive [8], which 
means that a scientist should be able to detect and insert events in a running simula-
tion by direct intervention. This requires a one-to-one correspondence between the 
internal execution of a formal language and its visualization so that the kinetics of  
the language can be fully reflected in the kinetics of the visualization and vice versa.

This ability to fully match the kinetics of a general (Turing-complete) model-
ing language to visual representations has been demonstrated, for example, for pi- 
calculus [9], but many practical challenges remain to adapting such general meth-
ods to specific visualization requirements. (See Figure 1 on the next page.) One 
such requirement, for example, is the visualization and tracking of molecular com-
plexes; to this end, the BlenX language [10] and its support tools permit explicit rep-
resentation of complexes of biological elements and examination of their evolution 
in time [11]. (See Figure 2 on page 103.) The graphical representation of complexes 
is also useful in studying morphogenesis processes to unravel the mechanistic steps 
of pattern formation. (See Figure 3 on page 104.)

analysIs

Model construction is one step in the scientific cycle, and appropriate modeling 
languages (along with their execution and visualization capabilities) are important, 
particularly for modeling complex systems. Ultimately, however, one will want to 
analyze the model using a large number of techniques. Some of these techniques 
may be centered on the underlying mathematical framework, such as the analysis of 
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differential equations, Markov chains, 
or Petri nets generated from the mod-
el. Other techniques may be centered 
on the model description (the lan-
guage in which the model is written). 
For example, we may want to know 
whether two different model descrip-
tions actually represent the same be-
havior, by some measure of behavior 
equivalence. This kind of model cor-
respondence can arise, for example, 
from apparently different biological 
systems that work by the same funda-
mental principles. A similar question 
is whether we can simplify (abstract) 
a model description and still preserve 
its behavior, again by some measure of 
behavior equivalence that may mask 
some unimportant detail. 

Behavioral equivalences are in fact 
a primary tool in computer science 
for verifying computing systems. For 
instance, we can use equivalences to 
ensure that an implementation is in 
agreement with a specification, ab-
stracting as much as possible from 
syntactic descriptions and instead fo-
cusing on the semantics (dynamic) of 
specifications and implementations. 
So far, biology has focused on syntac-

tic relationships between genes, genomes, and proteins. An entirely new avenue 
of research is the investigation of the semantic equivalences of biological entities 
populating complex networks of interactions. This approach could lead to new vi-
sions of systems and reinforce the need for computer science to enhance systems 
biology.

Biology is a data-intensive science. Biological systems are huge collections of in-
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Figure 1. 

This diagram can be placed in 1:1 correspon-
dence with formal stochastic pi-calculus 
models [9, 12, 13] so that one can edit either the 
diagrams or the models. The nodes represent 
molecular states (the node icons are just for  
illustration), and the labeled arcs represent  
interactions with other molecules in the envi-
ronment. The models use a biochemical variant 
of pi-calculus with rate weight as superscripts 
and with +/- for binding and unbinding.
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teracting components. The last decade of research has contributed to identifying and 
classifying those components, especially at the molecular level (gene, metabolites, 
proteins). To make sense of the large amount of data available, we need to implicitly 
represent them in compact and executable models so that executions can recover the 
available data as needed. This approach would merge syntax and semantics in unify-
ing representations and would create the need for different ways of storing, retrieving, 
and comparing data. A model repository that represents the dynamics of biological 
processes in a compact and mechanistic manner would therefore be extremely valu-
able and could heighten the understanding of biological data and the basic biological 
principles governing life. This would facilitate predictions and the optimal design of 
further experiments to move from data collection to knowledge production. 

Figure 2. 

The green S boxes in the diagram represent entities populating the biological system under con-
sideration. The light blue rectangles attached to the green boxes represent the active interfaces/
domains available for complexation and decomplexation. The diagram shows how the simulation 
of the BlenX specification formed a ring complex and provides the position and the connections 
between boxes for inspection.
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analysIs vIsualIzaTIon

Executable models need visualization to make their execution interactive (to dy-
namically focus on specific features) and reactive (to influence their execution on 
the fly). Execution is one form of analysis; other analysis methods will need vi-
sualization as well. For complex systems, the normal method of “batch” analysis, 
consisting of running a complex analysis on the model and then mining the output 
for clues, needs to be replaced with a more interactive, explorative approach.

Model abstraction is an important tool for managing complexity, and we can en-
vision performing this activity interactively—for example, by lumping components 
together or by hiding components. The notion of lumping will then need an appro-
priate visualization and an appropriate way of relating the behavior of the original 
components to the behavior of the lumped components. This doesn’t mean visual-
izing the modeling language, but rather visualizing an abstraction function between 

Figure 3. 

The green, red, and blue S boxes in the diagram represent different species populating the biologi-
cal system under consideration. The light blue rectangles attached to the boxes represent the active 
interfaces/domains available for complexation and decomplexation. The diagram elucidates how 
patterns are formed in morphogenesis processes simulated by BlenX specifications.
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models. We therefore suggest visualizing the execution of programs/models in such 
a way that the output is linked to the source code/model specification and the graph-
ical abstraction performed by the end user is transformed into a formal program/
model transformation. The supporting tool would then check which properties the 
transformation is preserving or not preserving and warn the user accordingly.

All the above reinforces the need for a formal and executable language to model 
biology as the core feature of an in silico laboratory for biologists that could be the 
next-generation high-throughput tool for biology.
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arning! The articles in Part 3 of this book use a 
range of dramatic metaphors, such as “explosion,” 
“tsunami,” and even the “big bang,” to strikingly 
illustrate how scientific research will be trans-

formed by the ongoing creation and availability of high volumes 
of scientific data. Although the imagery may vary, these authors 
share a common intent by addressing how we must adjust our  
approach to computational science to handle this new prolifera-
tion of data. Their choice of words is motivated by the opportunity 
for research breakthroughs afforded by these large and rich data-
sets, but it also implies the magnitude of our culture’s loss if our 
research infrastructure is not up to the task. 

Abbott’s perspective across all of scientific research challenges 
us with a fundamental question: whether, in light of the prolif-
eration of data and its increasing availability, the need for sharing 
and collaboration, and the changing role of computational science, 
there should be a “new path for science.” He takes a pragmatic 
view of how the scientific community will evolve, and he is skepti-
cal about just how eager researchers will be to embrace techniques 
such as ontologies and other semantic technologies. While avoid-
ing dire portents, Abbott is nonetheless vivid in characterizing a 
disconnect between the supply of scientific knowledge and the  
demands of the private and government sectors.

W
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To bring the issues into focus, Southan and Cameron explore the “tsunami” of 
data growing in the EMBL-Bank database—a nucleotide sequencing information 
service. Throughout Part 3 of this book, the field of genetic sequencing serves as a 
reasonable proxy for a number of scientific domains in which the rate of data pro-
duction is brisk (in this case, a 200% increase per annum), leading to major chal-
lenges in data aggregation, workflow, backup, archiving, quality, and retention, to 
name just a few areas.

Larus and Gannon inject optimism by noting that the data volumes are trac-
table through the application of multicore technologies—provided, of course, that 
we can devise the programming models and abstractions to make this technical  
innovation effective in general-purpose scientific research applications.

Next, we revisit the metaphor of a calamity induced by a data tidal wave as  
Gannon and Reed discuss how parallelism and the cloud can help with scalability 
issues for certain classes of computational problems. 

From there, we move to the role of computational workflow tools in helping to 
orchestrate key tasks in managing the data deluge. Goble and De Roure identify 
the benefits and issues associated with applying computational workflow to scien-
tific research and collaboration. Ultimately, they argue that workflows illustrate  
primacy of method as a crucial technology in data-centric research.

Fox and Hendler see “semantic eScience” as vital in helping to interpret interrela-
tionships of complex concepts, terms, and data. After explaining the potential bene-
fits of semantic tools in data-centric research, they explore some of the challenges to 
their smooth adoption. They note the inadequate participation of the scientific com-
munity in developing requirements as well as a lack of coherent discussion about the 
applicability of Web-based semantic technologies to the scientific process. 

Next, Hansen et al. provide a lucid description of the hurdles to visualizing large 
and complex datasets. They wrestle with the familiar topics of workflow, scalabil-
ity, application performance, provenance, and user interactions, but from a visual-
ization standpoint. They highlight that current analysis and visualization methods 
lag far behind our ability to create data, and they conclude that multidisciplinary 
skills are needed to handle diverse issues such as automatic data interpretation, 
uncertainty, summary visualizations, verification, and validation.

Completing our journey through these perils and opportunities, Parastatidis 
considers how we can realize a comprehensive knowledge-based research infra-
structure for science. He envisions this happening through a confluence of tradi-
tional scientific computing tools, Web-based tools, and select semantic methods.
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A New Path for Science?

he scientific challenges of the 21st century will strain 
the partnerships between government, industry, and 
academia that have developed and matured over the last 
century or so. For example, in the United States, begin-

ning with the establishment of the National Science Foundation 
in 1950, the nation’s research university system has blossomed and 
now dominates the basic research segment. (The applied research 
segment, which is far larger, is primarily funded and implemented 
within the private sector.) 

One cannot overstate the successes of this system, but it has 
come to be largely organized around individual science disciplines 
and rewards individual scientists’ efforts through publications and 
the promotion and tenure process. Moreover, the eternal “restless-
ness” of the system means that researchers are constantly seeking 
new ideas and new funding [1, 2]. An unexpected outcome of this 
system is the growing disconnect between the supply of scientific 
knowledge and the demand for that knowledge from the private 
and government sectors [3, 4]. The internal reward structure at 
universities, as well as the peer review system, favors research 
projects that are of inherent interest to the scientific community 
but not necessarily to those outside the academic community.
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New Drivers

It is time to reexamine the basic structures underlying our research enterprise. For 
example, given the emerging and urgent need for new approaches to climate and 
energy research in the broad context of sustainability, fundamental research on the 
global climate system will continue to be necessary, but businesses and policymak-
ers are asking questions that are far more interdisciplinary than in the past. This 
new approach is more akin to scenario development in support of risk assessment 
and management than traditional problem solving and the pursuit of knowledge 
for its own sake. 

In climate science, the demand side is focused on feedback between climate 
change and socioeconomic processes, rare (but high-impact) events, and the de- 
velopment of adaptive policies and management protocols. The science supply side 
favors studies of the physical and biological aspects of the climate system on a con-
tinental or global scale and reducing uncertainties (e.g., [5]). This misalignment 
between supply and demand hampers society’s ability to respond effectively and in 
a timely manner to the changing climate.

receNt History

The information technology (IT) infrastructure of 25 years ago was well suited to 
the science culture of that era. Data volumes were relatively small, and therefore 
each data element was precious. IT systems were relatively expensive and were 
accessible only to experts. The fundamental workflow relied on a data collection 
system (e.g., a laboratory or a field sensor), transfer into a data storage system, data 
processing and analysis, visualization, and publication. 

Figure 1 shows the architecture of NASA’s Earth Observing System Data and 
Information System (EOSDIS) from the late 1980s. Although many thought that 
EOSDIS was too ambitious (it planned for 1 terabyte per day of data), the primary 
argument against it was that it was too centralized for a system that needed to 
be science driven. EOSDIS was perceived to be a data factory, operating under a 
set of rigorous requirements with little opportunity for knowledge or technology 
infusion. Ultimately, the argument was not about centralized versus decentral-
ized but rather who would control the requirements: the science community or the 
NASA contractor. The underlying architecture, with its well-defined (and relatively 
modest-sized) data flows and mix of centralized and distributed components, has 
remained undisturbed, even as the World Wide Web, the Internet, and the volume 
of online data have grown exponentially. 
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tHe PreseNt Day

Today, the suite of national supercomputer centers as well as the notion of “cloud 
computing” looks much the same as the architecture shown in Figure 1. It doesn’t 
matter whether the network connection is an RS-232 asynchronous connection, 
a dial-up modem, or a gigabit network, or whether the device on the scientist’s 
desktop is a VT100 graphics terminal or a high-end multicore workstation. Virtual-
ized (but distributed) repositories of data storage and computing capabilities are 
accessed via network by relatively low-capability devices. 

Moore’s Law has had 25 years to play out since the design of EOSDIS. Although 
we generally focus on the increases in capacity and the precipitous decline in the 
price/performance ratio, the pace of rapid technological innovation has placed enor-
mous pressure on the traditional modes of scientific research. The vast amounts of 
data have greatly reduced the value of an individual data element, and we are no 
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longer data-limited but insight-limited. “Data-intensive” should not refer just to the 
centralized repositories but also to the far greater volumes of data that are network-
accessible in offices, labs, and homes and by sensors and portable devices. Thus, 
data-intensive computing should be considered more than just the ability to store 
and move larger amounts of data. The complexity of these new datasets as well as 
the increasing diversity of the data flows is rendering the traditional compute/data-
center model obsolete for modern scientific research. 

imPlicatioNs for scieNce

IT has affected the science community in two ways. First, it has led to the  
commoditization of generic storage and computing. For science tasks that can be 
accomplished through commodity services, such services are a reasonable option. 
It will always be more cost effective to use low-profit-margin, high-volume services 
through centralized mechanisms such as cloud computing. Thus more universities 
are relying on such services for data backup, e-mail, office productivity applica-
tions, and so on. 

The second way that IT has affected the science community is through radical 
personalization. With personal access to teraflops of computing and terabytes of 
storage, scientists can create their own compute clouds. Innovation and new sci-
ence services will come from the edges of the networks, not the commodity-driven 
datacenters. Moreover, not just scientists but the vastly larger number of sensors 
and laboratory instruments will soon be connected to the Internet with their own 
local computation and storage services. The challenge is to harness the power of 
this new network of massively distributed knowledge services.

Today, scientific discovery is not accomplished solely through the well-defined, 
rigorous process of hypothesis testing. The vast volumes of data, the complex and 
hard-to-discover relationships, the intense and shifting types of collaboration be-
tween disciplines, and new types of near-real-time publishing are adding pattern 
and rule discovery to the scientific method [6]. Especially in the area of climate 
science and policy, we could see a convergence of this new type of data-intensive 
research and the new generation of IT capabilities.

The alignment of science supply and demand in the context of continuing sci-
entific uncertainty will depend on seeking out new relationships, overcoming lan-
guage and cultural barriers to enable collaboration, and merging models and data 
to evaluate scenarios. This process has far more in common with network gaming 
than with the traditional scientific method. Capturing the important elements of 
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data preservation, collaboration, provenance, and accountability will require new 
approaches in the highly distributed, data-intensive research community.

Instead of well-defined data networks and factories coupled with an individually 
based publishing system that relies on peer review and tenure, this new research 
enterprise will be more unruly and less predictable, resembling an ecosystem in its 
approach to knowledge discovery. That is, it will include loose networks of poten-
tial services, rapid innovation at the edges, and a much closer partnership between 
those who create knowledge and those who use it. As with every ecosystem, emer-
gent (and sometimes unpredictable) behavior will be a dominant feature.

Our existing institutions—including federal agencies and research universities—
will be challenged by these new structures. Access to data and computation as well 
as new collaborators will not require the physical structure of a university or mil-
lions of dollars in federal grants. Moreover, the rigors of tenure and its strong em-
phasis on individual achievement in a single scientific discipline may work against 
these new approaches. We need an organization that integrates natural science 
with socioeconomic science, balances science with technology, focuses on systems 
thinking, supports flexible and interdisciplinary approaches to long-term problem 
solving, integrates knowledge creation and knowledge use, and balances individual 
and group achievement. 

Such a new organization could pioneer integrated approaches to a sustainable 
future, approaches that are aimed at understanding the variety of possible futures. 
It would focus on global-scale processes that are manifested on a regional scale 
with pronounced socioeconomic consequences. Rather than a traditional academic 
organization with its relatively static set of tenure-track professors, a new organiza-
tion could take more risks, build and develop new partnerships, and bring in people 
with the talent needed for particular tasks. Much like in the U.S. television series 
Mission Impossible, we will bring together people from around the world to address 
specific problems—in this case, climate change issues.

makiNg it HaPPeN

How can today’s IT enable this type of new organization and this new type of sci-
ence? In the EOSDIS era, it was thought that relational databases would provide the 
essential services needed to manage the vast volumes of data coming from the EOS 
satellites. Although database technology provided the baseline services needed for 
the standard EOS data products, it did not capture the innovation at the edges of 
the system where science was in control. Today, semantic webs and ontologies are 
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being proposed as a means to enable knowledge discovery and collaboration. How-
ever, as with databases, it is likely that the science community will be reluctant to 
use these inherently complex tools except for the most mundane tasks.

Ultimately, digital technology can provide only relatively sparse descriptions of 
the richness and complexity of the real world. Moreover, seeking the unusual and 
unexpected requires creativity and insight—processes that are difficult to represent 
in a rigid digital framework. On the other hand, simply relying on PageRank1-like 
statistical correlations based on usage will not necessarily lead to detection of the 
rare and the unexpected. However, new IT tools for the data-intensive world can 
provide the ability to “filter” these data volumes down to a manageable level as well 
as provide visualization and presentation services to make it easier to gain creative 
insights and build collaborations. 

The architecture for data-intensive computing should be based on storage, com-
puting, and presentation services at every node of an interconnected network. Pro-
viding standard, extensible frameworks that accommodate innovation at the net-
work edges should enable these knowledge “ecosystems” to form and evolve as the 
needs of climate science and policy change.
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sci enti f ic i n fr astruc tu r e

Scientific revolutions are difficult to quantify, but the 
rate of data generation in science has increased so pro-
foundly that we can simply examine a single area of the 
life sciences to appreciate the magnitude of this effect 

across all of them. Figure 1 on the next page tracks the dramatic 
increase in the number of individual bases submitted to the Eu-
ropean Molecular Biology Laboratory Nucleotide Sequence Data-
base1 (EMBL-Bank) by the global experimental community. This 
submission rate is currently growing at 200% per annum. 

Custodianship of the data is held by the International Nucle-
otide Sequence Database Collaboration (INSDC), which consists 
of the DNA Data Bank of Japan (DDBJ), GenBank in the U.S., and 
EMBL-Bank in the UK. These three repositories exchange new 
data on a daily basis. As of May 2009, the totals stood at approxi-
mately 250 billion bases in 160 million entries.

A recent submission to EMBL-Bank, accession number 
FJ982430, illustrates the speed of data generation and the effec-
tiveness of the global bioinformatics infrastructure in responding 
to a health crisis. It includes the complete H1 subunit sequence 
of 1,699 bases from the first case of novel H1N1 influenza virus 
in Denmark. This was submitted on May 4, 2009, within days of 
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the infected person being diagnosed. 
Many more virus subunit sequences 
have been submitted from the U.S., 
Italy, Mexico, Canada, Denmark, and 
Israel since the beginning of the 2009 
global H1N1 pandemic.

EMBL-Bank is hosted at the Euro-
pean Bioinformatics Institute (EBI), 
an academic organization based in 
Cambridge, UK, that forms part of 
the European Molecular Biology 
Laboratory (EMBL). The EBI is a cen-
ter for both research and services in 
bioinformatics. It hosts biological 
data, including nucleic acid, pro-
tein sequences, and macromolecular 
structures. The neighboring Well-
come Trust Sanger Institute gener-
ates about 8 percent of the world’s se-
quencing data output. Both of these 
institutions on the Wellcome Trust 

Genome campus include scientists who generate data and administer the databases 
into which it flows, biocurators who provide annotations, bioinformaticians who 
develop analytical tools, and research groups that seek biological insights and con-
solidate them through further experimentation. Consequently, it is a community in 
which issues surrounding computing infrastructure, data storage, and mining are 
confronted on a daily basis, and in which both local and global collaborative solu-
tions are continually explored. 

The collective name for the nucleotide sequencing information service is the Eu-
ropean Nucleotide Archive [1]. It includes EMBL-Bank and three other repositories 
that were set up for new types of data generation: the Trace Archive for trace data 
from first-generation capillary instruments, the Short Read Archive for data from 
next-generation sequencing instruments, and a pilot Trace Assembly Archive that 
stores alignments of sequencing reads with links to finished genomic sequences 
in EMBL-Bank. Data from all archives are exchanged regularly with the National 
Center for Biotechnology Information in the U.S. Figure 2 compares the sizes of 
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EMBL-Bank, the Trace Archive, and the Short 
Read Archive. 

tHe cHalleNge of Next-geNeratioN sequeNciNg

The introduction in 2005 of so-called next-gen-
eration sequencing instruments that are capable 
of producing millions of DNA sequence reads in 
a single run has not only led to a huge increase in 
genetic information but has also placed bioinfor-
matics, and life sciences research in general, at the 
leading of edge of infrastructure development for 
the storage, movement, analysis, interpretation, 
and visualization of petabyte-scale datasets [2]. 
The Short Read Archive, the European repository 
for accepting data from these machines, received 
30 terabytes (TB) of data in the first six months 
of operation—equivalent to almost 30% of the 
entire EMBL-Bank content accumulated over the 
28 years since data collection began. The uptake 
of new instruments and technical developments 
will not only increase submissions to this archive 
manyfold within a few years, but it will also pre-
lude the arrival of “next-next-generation” DNA se-
quencing systems [3].

To meet this demand, the EBI has increased storage from 2,500 TB (2.5 PB) in 
2008 to 5,000 TB (5 PB) in 2009—an approximate annual doubling. Even if the 
capacity keeps pace, bottlenecks might emerge as I/O limitations move to other 
points in the infrastructure. For example, at this scale, traditional backup becomes 
impractically slow. Indeed, a hypothetical total data loss at the EBI is estimated to 
require months of restore time. This means that streamed replication of the origi-
nal data is becoming a more efficient option, with copies being stored at multiple 
locations. Another bottleneck example is that technical advances in data transfer 
speeds now exceed the capacity to write out to disks—about 70 megabits/sec, with 
no imminent expectation of major performance increases. The problem can be 
ameliorated by writing to multiple disks, but at a considerable increase in cost. 

This inexorable load increase necessitates continual assessment of the balance 
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between submitting derived data to the repositories and storing raw instrument 
output locally. Scientists at all stages of the process, experimentalists, instrument 
operators, datacenter administrators, bioinformaticians, and biologists who ana-
lyze the results will need to be involved in decisions about storage strategies. For 
example, in laboratories running high-throughput sequencing instruments, the 
cost of storing raw data for a particular experiment is already approaching that of 
repeating the experiment. Researchers may balk at the idea of deleting raw data 
after processing, but this is a pragmatic option that has to be considered. Less con-
troversial solutions involve a triage of data reduction options between raw output, 
base calls, sequence reads, assemblies, and genome consensus sequences. An ex-
ample of such a solution is FASTQ, a text-based format for storing both a nucleotide 
sequence and its corresponding quality scores, both encoded with a single ASCII 
character. Developed by the Sanger Institute, it has recently become a standard 
for storing the output of next-generation sequencing instruments. It can produce a 
200-fold reduction in data volume—that is, 99.5% of the raw data can be discarded. 
Even more compressed sequence data representations are in development.

geNomes: rolliNg off tHe ProDuctioN liNe

The production of complete genomes is rapidly advancing our understanding of 
biology and evolution. The impressive progress is illustrated in Figure 3, which de-
picts the increase of genome sequencing projects in the Genomes OnLine Database 
(GOLD).

While the figure was generated based on all global sequencing projects, many of 
these genomes are available for analysis on the Ensembl Web site hosted jointly by 
the EBI and the Sanger Institute. The graph shows that, by 2010, well over 5,000 
genome projects will have been initiated and more than 1,000 will have produced 
complete assemblies. A recent significant example is the bovine genome [4], which 
followed the chicken and will soon be joined by all other major agricultural species. 
These will not only help advance our understanding of mammalian evolution and 
domestication, but they will also accelerate genetic improvements for farming and 
food production. 

resequeNciNg tHe HumaN geNome: aNotHer Data scale-uP

Recent genome-wide studies of human genetic variation have advanced our under-
standing of common human diseases. This has motivated the formation of an inter-
national consortium to develop a comprehensive catalogue of sequence variants in 
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multiple human populations. Over the 
next three years, the Sanger Institute, 
BGI Shenzhen in China, and the Na-
tional Human Genome Research Insti-
tute’s Large-Scale Genome Sequencing 
Program in the U.S. are planning to 
sequence a minimum of 1,000 human 
genomes. 

In 2008, the pilot phase of the proj-
ect generated approximately 1 terabase 
(trillion bases) of sequence data per 
month; the number is expected to dou-
ble in 2009. The total generated will be 
about 20 terabases. The requirement 
of about 30 bytes of disk storage per 
base of sequence can be extrapolated 
to about 500 TB of data for the entire 
project. By comparison, the original 
human genome project took about 10 
years to generate about 40 gigabases 
(billion bases) of DNA sequence. Over 
the next two years, up to 10 billion bas-
es will be sequenced per day, equating 

to more than two human genomes (at 2.85 billion per human) every 24 hours. The 
completed dataset of 6 trillion DNA bases will be 60 times more sequence data 
than that shown earlier in Figure 1. 

tHe raisoN D’être of maNagiNg Data: coNversioN to New kNowleDge 

Even before the arrival of the draft human genome in 2001, biological databases 
were moving from the periphery to the center of modern life sciences research, 
leading to the problem that the capacity to mine data has fallen behind our ability 
to generate it. As a result, there is a pressing need for new methods to fully exploit 
not only genomic data but also other high-throughput result sets deposited in data- 
bases. These result sets are also becoming more hypothesis-neutral compared with 
traditional small-scale, focused experiments. Usage statistics for EBI services, 
shown in Figure 4 on the next page, show that the biological community, sup-
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ported by the bioinformatics  
specialists they collaborate 
with, are accessing these  
resources in increasing num- 
bers. 

The Web pages associated 
with the 63 databases hosted 
at the EBI now receive over 
3.5 million hits per day, rep-
resenting more than half 
a million independent us-
ers per month. While this 
does not match the increase 
in rates of data accumula-
tion, evidence for a strong 
increase in data mining is 
provided by the Web ser-
vices’ programmatic access 
figures, which are approach-
ing 1 million jobs per month. 
To further facilitate data use, 

the EBI is developing, using open standards, the EB-eye search system to provide a 
single entry point. By indexing in various formats (e.g., flat files, XML dumps, and 
OBO format), the system provides fast access and allows the user to search globally 
across all EBI databases or individually in selected resources. 

euroPeaN PlaNs for coNsoliDatiNg iNfrastructure

EBI resources are effectively responding to increasing demand from both the gen-
erators and users of data, but increases in scale for the life sciences across the whole 
of Europe require long-term planning. This is the mission of the ELIXIR project, 
which aims to ensure a reliable distributed infrastructure to maximize access to 
biological information that is currently distributed in more than 500 databases 
throughout Europe. The project addresses not only data management problems but 
also sustainable funding to maintain the data collections and global collaborations. 
It is also expected to put in place processes for developing collections for new data 
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types, supporting interoperability of bioinformatics tools, and developing bioinfor-
matics standards and ontologies.

The development of ELIXIR parallels the transition to a new phase in which 
high-performance, data-intensive computing is becoming essential to progress in 
the life sciences [5]. By definition, the consequences for research cannot be pre-
dicted with certainty. However, some pointers can be given. By mining not only the 
increasingly comprehensive datasets generated by genome sequencing mentioned 
above but also transcript data, proteomics information, and structural genomics 
output, biologists will obtain new insights into the processes of life and their evolu-
tion. This will in turn facilitate new predictive power for synthetic biology and sys-
tems biology. Beyond its profound impact on the future of academic research, this 
data-driven progress will also translate to the more applied areas of science—such 
as pharmaceutical research, biotechnology, medicine, public health, agriculture, 
and environmental science—to improve the quality of life for everyone.
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n the past half century, parallel computers, parallel computa-
tion, and scientific research have grown up together. Scientists 
and researchers’ insatiable need to perform more and larger 
computations has long exceeded the capabilities of conven-

tional computers. The only approach that has met this need is 
parallelism—computing more than one operation simultaneously. 
At one level, parallelism is simple and easy to put into practice. 
Building a parallel computer by replicating key operating compo-
nents such as the arithmetic units or even complete processors is 
not difficult. But it is far more challenging to build a well-balanced 
machine that is not stymied by internal bottlenecks. In the end, 
the principal problem has been software, not hardware. Parallel 
programs are far more difficult to design, write, debug, and tune 
than sequential software—which itself is still not a mature, repro-
ducible artifact.

tHe evolutioN of Parallel comPutiNg 

The evolution of successive generations of parallel computing 
hardware has also forced a constant rethinking of parallel algo-
rithms and software. Early machines such as the IBM Stretch, the 
Cray I, and the Control Data Cyber series all exposed parallelism 
as vector operations. The Cray II, Encore, Alliant, and many gen-
erations of IBM machines were built with multiple processors that 

I
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shared memory. Because it proved so difficult to increase the number of proces-
sors while sharing a single memory, designs evolved further into systems in which 
no memory was shared and processors shared information by passing messages.  
Beowulf clusters, consisting of racks of standard PCs connected by Ethernet, 
emerged as an economical approach to supercomputing. Networks improved in 
latency and bandwidth, and this form of distributed computing now dominates su-
percomputers. Other systems, such as the Cray multi-threaded platforms, demon-
strated that there were different approaches to addressing shared-memory parallel-
ism. While the scientific computing community has struggled with programming 
each generation of these exotic machines, the mainstream computing world has 
been totally satisfied with sequential programming on machines where any paral-
lelism is hidden from the programmer deep in the hardware. 

In the past few years, parallel computers have entered mainstream computing 
with the advent of multicore computers. Previously, most computers were sequen-
tial and performed a single operation per time step. Moore’s Law drove the im-
provements in semiconductor technology that doubled the transistors on a chip 
every two years, which increased the clock speed of computers at a similar rate 
and also allowed for more sophisticated computer implementations. As a result, 
computer performance grew at roughly 40% per year from the 1970s, a rate that 
satisfied most software developers and computer users. This steady improvement 
ended because increased clock speeds require more power, and at approximately  
3 GHz, chips reached the limit of economical cooling. Computer chip manufactur-
ers, such as Intel, AMD, IBM, and Sun, shifted to multicore processors that used 
each Moore’s Law generation of transistors to double the number of independent 
processors on a chip. Each processor ran no faster than its predecessor, and some-
times even slightly slower, but in aggregate, a multicore processor could perform 
twice the amount of computation as its predecessor.

Parallel ProgrammiNg cHalleNges

This new computer generation rests on the same problematic foundation of soft-
ware that the scientific community struggled with in its long experience with par-
allel computers. Most existing general-purpose software is written for sequential 
computers and will not run any faster on a multicore computer. Exploiting the po-
tential of these machines requires new, parallel software that can break a task into 
multiple pieces, solve them more or less independently, and assemble the results 
into a single answer. Finding better ways to produce parallel software is currently 
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the most pressing problem facing the software development community and is the 
subject of considerable research and development.

The scientific and engineering communities can both benefit from these urgent 
efforts and can help inform them. Many parallel programming techniques origi-
nated in the scientific community, whose experience has influenced the search for 
new approaches to programming multicore computers. Future improvements in 
our ability to program multicore computers will benefit all software developers as 
the distinction between the leading-edge scientific community and general-purpose 
computing is erased by the inevitability of parallel computing as the fundamental 
programming paradigm.

One key problem in parallel programming today is that most of it is conducted 
at a very low level of abstraction. Programmers must break their code into com-
ponents that run on specific processors and communicate by writing into shared 
memory locations or exchanging messages. In many ways, this state of affairs is 
similar to the early days of computing, when programs were written in assembly 
languages for a specific computer and had to be rewritten to run on a different 
machine. In both situations, the problem was not just the lack of reusability of pro-
grams, but also that assembly language development was less productive and more 
error prone than writing programs in higher-level languages. 

aDDressiNg tHe cHalleNges

Several lines of research are attempting to raise the level at which parallel programs 
can be written. The oldest and best-established idea is data parallel programming. 
In this programming paradigm, an operation or sequence of operations is applied 
simultaneously to all items in a collection of data. The granularity of the operation 
can range from adding two numbers in a data parallel addition of two matrices 
to complex data mining calculations in a map-reduce style computation [1]. The 
appeal of data parallel computation is that parallelism is mostly hidden from the 
programmer. Each computation proceeds in isolation from the concurrent compu-
tations on other data, and the code specifying the computation is sequential. The 
developer need not worry about the details of moving data and running computa-
tions because they are the responsibility of the runtime system. GPUs (graphics 
processing units) provide hardware support for this style of programming, and they 
have recently been extended into GPGPUs (general-purpose GPUs) that perform 
very high-performance numeric computations.

Unfortunately, data parallelism is not a programming model that works for all 
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types of problems. Some computations require more communication and coordina-
tion. For example, protein folding calculates the forces on all atoms in parallel, but 
local interactions are computed in a manner different from remote interactions. 
Other examples of computations that are hard to write as data parallel programs 
include various forms of adaptive mesh refinement that are used in many modern 
physics simulations in which local structures, such as clumps of matter or cracks in 
a material structure, need finer spatial resolution than the rest of the system. 

A new idea that has recently attracted considerable research attention is trans-
actional memory (TM), a mechanism for coordinating the sharing of data in a 
multicore computer. Data sharing is a rich source of programming errors because 
the developer needs to ensure that a processor that changes the value of data has 
exclusive access to it. If another processor also tries to access the data, one of the 
two updates can be lost, and if a processor reads the data too early, it might see an 
inconsistent value. The most common mechanism for preventing this type of error 
is a lock, which a program uses to prevent more than one processor from accessing 
a memory location simultaneously. Locks, unfortunately, are low-level mechanisms 
that are easily and frequently misused in ways that both allow concurrent access 
and cause deadlocks that freeze program execution.

TM is a higher-level abstraction that allows the developer to identify a group of 
program statements that should execute atomically—that is, as if no other part of 
the program is executing at the same time. So instead of having to acquire locks for 
all the data that the statements might access, the developer shifts the burden to the 
runtime system and hardware. TM is a promising idea, but many engineering chal-
lenges still stand in the way of its widespread use. Currently, TM is expensive to im-
plement without support in the processors, and its usability and utility in large, real-
world codes is as yet undemonstrated. If these issues can be resolved, TM promises 
to make many aspects of multicore programming far easier and less error prone.

Another new idea is the use of functional programming languages. These lan-
guages embody a style of programming that mostly prohibits updates to program 
state. In other words, in these languages a variable can be given an initial value, 
but that value cannot be changed. Instead, a new variable is created with the new 
value. This style of programming is well suited to parallel programming because 
it eliminates the updates that require synchronization between two processors. 
Parallel, functional programs generally use mutable state only for communication 
among parallel processors, and they require locks or TM only for this small, dis-
tinct part of their data. 
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Until recently, only the scientific and engineering communities have struggled 
with the difficulty of using parallel computers for anything other than the most 
embarrassingly parallel tasks. The advent of multicore processors has changed this 
situation and has turned parallel programming into a major challenge for all soft-
ware developers. The new ideas and programming tools developed for mainstream 
programs will likely also benefit the technical community and provide it with new 
means to take better advantage of the continually increasing power of multicore 
processors.

REFERENCES
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Parallelism and the Cloud

ver the past decade, scientific and engineering  
research via computing has emerged as the third  
pillar of the scientific process, complementing the-
ory and experiment. Several national studies have 

highlighted the importance of computational science as a critical 
enabler of scientific discovery and national competitiveness in the 
physical and biological sciences, medicine and healthcare, and  
design and manufacturing [1-3]. 

As the term suggests, computational science has historically  
focused on computation: the creation and execution of mathemat-
ical models of natural and artificial processes. Driven by opportu-
nity and necessity, computational science is expanding to encom-
pass both computing and data analysis. Today, a rising tsunami of 
data threatens to overwhelm us, consuming our attention by its 
very volume and diversity. Driven by inexpensive, seemingly ubiq-
uitous sensors, broadband networks, and high-capacity storage 
systems, the tsunami encompasses data from sensors that monitor 
our planet from deep in the ocean, from land instruments, and 
from space-based imaging systems. It also includes environmental 
measurements and healthcare data that quantify biological pro-
cesses and the effects of surrounding conditions. Simply put, we 
are moving from data paucity to a data plethora, which is leading 
to a relative poverty of human attention to any individual datum 
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and is necessitating machine-assisted winnowing.
This ready availability of diverse data is shifting scientific approaches from the 

traditional, hypothesis-driven scientific method to science based on exploration. 
Researchers no longer simply ask, “What experiment could I construct to test this 
hypothesis?” Increasingly, they ask, “What correlations can I glean from extant 
data?” More tellingly, one wishes to ask, “What insights could I glean if I could 
fuse data from multiple disciplines and domains?” The challenge is analyzing many 
petabytes of data on a time scale that is practical in human terms.

The ability to create rich, detailed models of natural and artificial phenomena 
and to process large volumes of experimental data created by a new generation 
of scientific instruments that are themselves powered by computing makes com-
puting a universal intellectual amplifier, advancing all of science and engineering 
and powering the knowledge economy. Cloud computing is the latest technological 
evolution of computational science, allowing groups to host, process, and analyze 
large volumes of multidisciplinary data. Consolidating computing and storage in 
very large datacenters creates economies of scale in facility design and construc-
tion, equipment acquisition, and operations and maintenance that are not possible 
when these elements are distributed. Moreover, consolidation and hosting mitigate 
many of the sociological and technical barriers that have limited multidisciplinary 
data sharing and collaboration. Finally, cloud hosting facilitates long-term data 
preservation—a task that is particularly challenging for universities and govern-
ment agencies and is critical to our ability to conduct longitudinal experiments. 

It is not unreasonable to say that modern datacenters and modern supercomput-
ers are like twins separated at birth. Both are massively parallel in design, and both 
are organized as a network of communicating computational nodes. The individual 
nodes of each are based on commodity microprocessors that have multiple cores, 
large memories, and local disk storage. They both execute applications that are 
designed to exploit massive amounts of parallelism. Their differences lie in their 
evolution. Massively parallel supercomputers have been designed to support com-
putation with occasional bursts of input/output and to complete a single massive 
calculation as fast as possible, one job at a time. In contrast, datacenters direct their 
power outward to the world and consume vast quantities of input data. 

Parallelism can be exploited in cloud computing in two ways. The first is for hu-
man access. Cloud applications are designed to be accessed as Web services, so they 
are organized as two or more layers of processes. One layer provides the service in-
terface to the user’s browser or client application. This “Web role” layer accepts us-
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ers’ requests and manages the tasks assigned to the second layer. The second layer 
of processes, sometimes known as the “worker role” layer, executes the analytical 
tasks required to satisfy user requests. One Web role and one worker role may be 
sufficient for a few simultaneous users, but if a cloud application is to be widely 
used—such as for search, customized maps, social networks, weather services, 
travel data, or online auctions—it must support thousands of concurrent users. 

The second way in which parallelism is exploited involves the nature of the data 
analysis tasks undertaken by the application. In many large data analysis scenarios, 
it is not practical to use a single processor or task to scan a massive dataset or data 
stream to look for a pattern—the overhead and delay are too great. In these cases, 
one can partition the data across large numbers of processors, each of which can 
analyze a subset of the data. The results of each “sub-scan” are then combined and 
returned to the user. 

This “map-reduce” pattern is frequently used in datacenter applications and is 
one in a broad family of parallel data analysis queries used in cloud computing. Web 
search is the canonical example of this two-phase model. It involves constructing 
a searchable keyword index of the Web’s contents, which entails creating a copy 
of the Web and sorting the contents via a sequence of map-reduce steps. Three key 
technologies support this model of parallelism: Google has an internal version [4], 
Yahoo! has an open source version known as Hadoop, and Microsoft has a map- 
reduce tool known as DryadLINQ [5]. Dryad is a mechanism to support the exe-
cution of distributed collections of tasks that can be configured into an arbitrary  
directed acyclic graph (DAG). The Language Integrated Query (LINQ) extension to 
C# allows SQL-like query expressions to be embedded directly in regular programs. 
The DryadLINQ system can automatically compile these queries into Dryad DAG, 
which can be executed automatically in the cloud. 

Microsoft Windows Azure supports a combination of multi-user scaling and 
data analysis parallelism. In Azure, applications are designed as stateless “roles” 
that fetch tasks from queues, execute them, and place new tasks or data into other 
queues. Map-reduce computations in Azure consist of two pools of worker roles: 
mappers, which take map tasks off a map queue and push data to the Azure storage, 
and reducers, which look for reduce tasks that point to data in the storage system 
that need reducing. Whereas DryadLINQ executes a static DAG, Azure can execute 
an implicit DAG in which nodes correspond to roles and links correspond to mes-
sages in queues. Azure computations can also represent the parallelism generated 
by very large numbers of concurrent users. 



SCIENTIFIC INFRASTRUCTURE1 3 4

This same type of map-reduce data analysis appears repeatedly in large-scale sci-
entific analyses. For example, consider the task of matching a DNA sample against 
the thousands of known DNA sequences. This kind of search is an “embarrassingly 
parallel” task that can easily be sped up if it is partitioned into many independent 
search tasks over subsets of the data. Similarly, consider the task of searching for 
patterns in medical data, such as to find anomalies in fMRI scans of brain images, 
or the task of searching for potential weather anomalies in streams of events from 
radars. 

Finally, another place where parallelism can be exploited in the datacenter is at 
the hardware level of an individual node. Not only does each node have multiple 
processors, but each typically has multiple computer cores. For many data analy-
sis tasks, one can exploit massive amounts of parallelism at the instruction level. 
For example, filtering noise from sensor data may involve invoking a Fast Fourier 
Transform (FFT) or other spectral methods. These computations can be sped up by 
using general-purpose graphics processing units (GPGPUs) in each node. Depend-
ing on the rate at which a node can access data, this GPGPU-based processing may 
allow us to decrease the number of nodes required to meet an overall service rate.

The World Wide Web began as a loose federation of simple Web servers that each 
hosted scientific documents and data of interest to a relatively small community of 
researchers. As the number of servers grew exponentially and the global Internet 
matured, Web search transformed what was initially a scientific experiment into 
a new economic and social force. The effectiveness of search was achievable only 
because of the available parallelism in massive datacenters. As we enter the period 
in which all of science is being driven by a data explosion, cloud computing and its 
inherent ability to exploit parallelism at many levels has become a fundamental 
new enabling technology to advance human knowledge. 
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W e are in an era of data-centric scientific research, 
in which hypotheses are not only tested through 
directed data collection and analysis but also gen-
erated by combining and mining the pool of data 

already available [1-3]. The scientific data landscape we draw upon 
is expanding rapidly in both scale and diversity. Taking the life sci-
ences as an example, high-throughput gene sequencing platforms 
are capable of generating terabytes of data in a single experiment, 
and data volumes are set to increase further with industrial-scale 
automation. From 2001 to 2009, the number of databases reported 
in Nucleic Acids Research jumped from 218 to 1,170 [4]. Not only 
are the datasets growing in size and number, but they are only 
partly coordinated and often incompatible [5], which means that 
discovery and integration tasks are significant challenges. At the 
same time, we are drawing on a broader array of data sources: 
modern biology draws insights from combining different types of 
“omic” data (proteomic, metabolomic, transcriptomic, genomic) 
as well as data from other disciplines such as chemistry, clinical 
medicine, and public health, while systems biology links multi-
scale data with multi-scale mathematical models. These data en-
compass all types: from structured database records to published 
articles, raw numeric data, images, and descriptive interpretations 
that use controlled vocabularies. 
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Data generation on this scale must be matched by scalable processing methods. 
The preparation, management, and analysis of data are bottlenecks and also be-
yond the skill of many scientists. Workflows [6] provide (1) a systematic and auto-
mated means of conducting analyses across diverse datasets and applications; (2) a 
way of capturing this process so that results can be reproduced and the method can 
be reviewed, validated, repeated, and adapted; (3) a visual scripting interface so 
that computational scientists can create these pipelines without low-level program-
ming concern; and (4) an integration and access platform for the growing pool of 
independent resource providers so that computational scientists need not special-
ize in each one. The workflow is thus becoming a paradigm for enabling science 
on a large scale by managing data preparation and analysis pipelines, as well as the 
preferred vehicle for computational knowledge extraction. 

workflows DefiNeD

A workflow is a precise description of a scientific procedure—a multi-step process to 
coordinate multiple tasks, acting like a sophisticated script [7]. Each task represents 
the execution of a computational process, such as running a program, submitting a 
query to a database, submitting a job to a compute cloud or grid, or invoking a ser-
vice over the Web to use a remote resource. Data output from one task is consumed 
by subsequent tasks according to a predefined graph topology that “orchestrates” 
the flow of data. Figure 1 presents an example workflow, encoded in the Taverna 
Workflow Workbench [8], which searches for genes by linking four publicly avail-
able data resources distributed in the U.S., Europe, and Japan: BioMart, Entrez, 
UniProt, and KEGG.

Workflow systems generally have three components: an execution platform, a 
visual design suite, and a development kit. The platform executes the workflow 
on behalf of applications and handles common crosscutting concerns, including  
(1) invocation of the service applications and handling the heterogeneity of data 
types and interfaces on multiple computing platforms; (2) monitoring and recovery 
from failures; (3) optimization of memory, storage, and execution, including con-
currency and parallelization; (4) data handling: mapping, referencing, movement, 
streaming, and staging; (5) logging of processes and data provenance tracking; and 
(6) security and monitoring of access policies. Workflow systems are required to 
support long-running processes in volatile environments and thus must be robust 
and capable of fault tolerance and recovery. They also need to evolve continu-
ally to harness the growing capabilities of underlying computational and storage  
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Figure 1. 

A Taverna workflow that connects several internationally distributed datasets to identify candi-
date genes that could be implicated in resistance to African trypanosomiasis [11].
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resources, delivering greater capacity for analysis. 
The design suite provides a visual scripting application for authoring and shar-

ing workflows and preparing the components that are to be incorporated as execut-
able steps. The aim is to shield the author from the complexities of the underlying 
applications and enable the author to design and understand workflows without 
recourse to commissioning specialist and specific applications or hiring software 
engineers. This empowers scientists to build their own pipelines when they need 
them and how they want them. Finally, the development kit enables developers to 
extend the capabilities of the system and enables workflows to be embedded into 
applications, Web portals, or databases. This embedding is transformational: it has 
the potential to incorporate sophisticated knowledge seamlessly and invisibly into 
the tools that scientists use routinely. 

Each workflow system has its own language, design suite, and software compo-
nents, and the systems vary in their execution models and the kinds of components 
they coordinate [9]. Sedna is one of the few to use the industry-standard Business 
Process Execution Language (BPEL) for scientific workflows [10]. General-purpose 
open source workflow systems include Taverna,1 Kepler,2 Pegasus,3 and Triana.4 
Other systems, such as the LONI Pipeline5 for neuroimaging and the commercial 
Pipeline Pilot6 for drug discovery, are more geared toward specific applications and 
are optimized to support specific component libraries. These focus on interoperat-
ing applications; other workflow systems target the provisioning of compute cycles 
or submission of jobs to grids. For example, Pegasus and DAGMan7 have been used 
for a series of large-scale eScience experiments such as prediction models in earth-
quake forecasting using sensor data in the Southern California Earthquake Center 
(SCEC) CyberShake project.8

workflow usage

Workflows liberate scientists from the drudgery of routine data processing so  
they can concentrate on scientific discovery. They shoulder the burden of routine 
tasks, they represent the computational protocols needed to undertake data-centric  

1 www.taverna.org.uk 
2 http://kepler-project.org
3 http://pegasus.isi.edu
4 www.trianacode.org
5 http://pipeline.loni.ucla.edu
6 http://accelrys.com/products/scitegic
7 www.cs.wisc.edu/condor/dagman
8 http://epicenter.usc.edu/cmeportal/CyberShake.html
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science, and they open up the use of processes and data resources to a much wider 
group of scientists and scientific application developers. 

Workflows are ideal for systematically, accurately, and repeatedly running rou-
tine procedures: managing data capture from sensors or instruments; cleaning, 
normalizing, and validating data; securely and efficiently moving and archiving 
data; comparing data across repeated runs; and regularly updating data warehous-
es. For example, the Pan-STARRS9 astronomical survey uses Microsoft Trident  
Scientific Workflow Workbench10 workflows to load and validate telescope de-
tections running at about 30 TB per year. Workflows have also proved useful for  
maintaining and updating data collections and warehouses by reacting to changes 
in the underlying datasets. For example, the Nijmegen Medical Centre rebuilt the 
tGRAP G-protein coupled receptors mutant database using a suite of text-mining 
Taverna workflows. 

At a higher level, a workflow is an explicit, precise, and modular expression of 
an in silico or “dry lab” experimental protocol. Workflows are ideal for gathering 
and aggregating data from distributed datasets and data-emitting algorithms—a 
core activity in dataset annotation; data curation; and multi-evidential, compara-
tive science. In Figure 1, disparate datasets are searched to find and aggregate data 
related to metabolic pathways implicated in resistance to African trypanosomiasis; 
interlinked datasets are chained together by the dataflow. In this instance, the au-
tomated and systematic processing by the workflow overcame the inadequacies of 
manual data triage—which leads to prematurely excluding data from analysis to 
cope with the quantity—and delivered new results [11].

Beyond data assembly, workflows codify data mining and knowledge discovery 
pipelines and parameter sweeps across predictive algorithms. For example, LEAD11 
workflows are driven by external events generated by data mining agents that mon-
itor collections of instruments for significant patterns to trigger a storm predic-
tion analysis; the Jet Propulsion Laboratory uses Taverna workflows for exploring a 
large space of multiple-parameter configurations of space instruments. 

Finally, workflow systems liberate the implicit workflow embedded in an  
application into an explicit and reusable specification over a common software  
machinery and shared infrastructure. Expert informaticians use workflow sys-
tems directly as means to develop workflows for handling infrastructure; expert  

9 http://pan-starrs.ifa.hawaii.edu 
10 http://research.microsoft.com/en-us/collaboration/tools/trident.aspx
11 http://portal.leadproject.org
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scientific informaticians use them to design and explore new investigative pro-
cedures; a larger group of scientists uses precooked workflows with restricted  
configuration constraints launched from within applications or hidden behind 
Web portals.

workflow-eNableD Data-ceNtric scieNce

Workflows offer techniques to support the new paradigm of data-centric science. 
They can be replayed and repeated. Results and secondary data can be computed as 
needed using the latest sources, providing virtual data (or on-demand) warehouses 
by effectively providing distributed query processing. Smart reruns of workflows au-
tomatically deliver new outcomes when fresh primary data and new results become 
available—and also when new methods become available. The workflows them-
selves, as first-class citizens in data-centric science, can be generated and trans-
formed dynamically to meet the requirements at hand. In a landscape of data in 
considerable flux, workflows provide robustness, accountability, and full auditing. 
By combining workflows and their execution records with published results, we 
can promote systematic, unbiased, transparent, and comparable research in which 
outcomes carry the provenance of their derivation. This can potentially accelerate 
scientific discovery. 

To accelerate experimental design, workflows can be reconfigured and repur-
posed as new components or templates. Creating workflows requires expertise that 
is hard won and often outside the skill set of the researcher. Workflows are often 
complex and challenging to build because they are essentially forms of program-
ming that require some understanding of the datasets and the tools they manip-
ulate [12]. Hence there is significant benefit in establishing shared collections of 
workflows that contain standard processing pipelines for immediate reuse or for 
repurposing in whole or in part. These aggregations of expertise and resources can 
help propagate techniques and best practices. Specialists can create the application 
steps, experts can design the workflows and set parameters, and the inexperienced 
can benefit by using sophisticated protocols.

The myExperiment12 social Web site has demonstrated that by adopting content- 
sharing tools for repositories of workflows, we can enable social networking around 
workflows and provide community support for social tagging, comments, rat-
ings and recommendations, and mixing of new workflows with those previously  

12 www.myexperiment.org
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deposited [13]. This is made possible by the scale of participation in data-centric 
science, which can be brought to bear on challenging problems. For example, the 
environment of workflow execution is in such a state of flux that workflows appear 
to decay over time, but workflows can be kept current by a combination of expert 
and community curation.

Workflows enable data-centric science to be a collaborative endeavor on mul-
tiple levels. They enable scientists to collaborate over shared data and shared ser-
vices, and they grant non-developers access to sophisticated code and applications 
without the need to install and operate them. Consequently, scientists can use the 
best applications, not just the ones with which they are familiar. Multidisciplinary 
workflows promote even broader collaboration. In this sense, a workflow system is 
a framework for reusing a community’s tools and datasets that respects the original 
codes and overcomes diverse coding styles. Initiatives such as the BioCatalogue13 
registry of life science Web services and the component registries deployed at SCEC 
enable components to be discovered. In addition to the benefits that come from  
explicit sharing, there is considerable value in the information that may be gath-
ered just through monitoring the use of data sources, services, and methods. This 
enables automatic monitoring of resources and recommendation of common prac-
tice and optimization. 

Although the impact of workflow tools on data-centric research is potentially 
profound—scaling processing to match the scaling of data—many challenges exist 
over and above the engineering issues inherent in large-scale distributed software 
[14]. There are a confusing number of workflow platforms with various capabili-
ties and purposes and little compliance with standards. Workflows are often diffi-
cult to author, using languages that are at an inappropriate level of abstraction and 
expecting too much knowledge of the underlying infrastructure. The reusability 
of a workflow is often confined to the project it was conceived in—or even to its 
author—and it is inherently only as strong as its components. Although workflows 
encourage providers to supply clean, robust, and validated data services, compo-
nent failure is common. If the services or infrastructure decays, so does the work-
flow. Unfortunately, debugging failing workflows is a crucial but neglected topic. 
Contemporary workflow platforms fall short of adequately supporting rapid deploy-
ment into the user applications that consume them, and legacy application codes 
need to be integrated and managed.

13 www.biocatalogue.org
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coNclusioN

Workflows affect data-centric research in four ways. First, they shift scientific 
practice. For example, in a data-driven hypothesis [1], data analysis yields results 
that are to be tested in the laboratory. Second, they have the potential to empower  
scientists to be the authors of their own sophisticated data processing pipelines 
without having to wait for software developers to produce the tools they need. 
Third, they offer systematic production of data that is comparable and verifiably  
attributable to its source. Finally, people speak of a data deluge [15], and data- 
centric science could be characterized as being about the primacy of data as op-
posed to the primacy of the academic paper or document [16], but it brings with it a 
method deluge: workflows illustrate primacy of method as another crucial paradigm 
in data-centric research. 
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cience is becoming increasingly dependent on data, yet 
traditional data technologies were not designed for the 
scale and heterogeneity of data in the modern world. 
Projects such as the Large Hadron Collider (LHC) and 

the Australian Square Kilometre Array Pathfinder (ASKAP) will 
generate petabytes of data that must be analyzed by hundreds of 
scientists working in multiple countries and speaking many differ-
ent languages. The digital or electronic facilitation of science, or 
eScience [1], is now essential and becoming widespread.

Clearly, data-intensive science, one component of eScience, 
must move beyond data warehouses and closed systems, striving 
instead to allow access to data to those outside the main project 
teams, allow for greater integration of sources, and provide inter-
faces to those who are expert scientists but not experts in data 
administration and computation. As eScience flourishes and the 
barriers to free and open access to data are being lowered, other, 
more challenging, questions are emerging, such as, “How do I use 
this data that I did not generate?” or “How do I use this data type, 
which I have never seen, with the data I use every day?” or “What 
should I do if I really need data from another discipline but I can-
not understand its terms?” This list of questions is large and grow-
ing as data and information product use increases and as more of 
science comes to rely on specialized devices.
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An important insight into dealing with heterogeneous data is that if you know 
what the data “means,” it will be easier to use. As the volume, complexity, and 
heterogeneity of data resources grow, scientists increasingly need new capabilities 
that rely on new “semantic” approaches (e.g., in the form of ontologies—machine 
encodings of terms, concepts, and relations among them). Semantic technologies 
are gaining momentum in eScience areas such as solar-terrestrial physics (see  
Figure 1), ecology,1 ocean and marine sciences,2 healthcare, and life sciences,3 to 
name but a few. The developers of eScience infrastructures are increasingly in need 
of semantic-based methodologies, tools, and middleware. They can in turn facili-
tate scientific knowledge modeling, logic-based hypothesis checking, semantic data 
integration, application composition, and integrated knowledge discovery and data 
analysis for different scientific domains and systems noted above, for use by scien-
tists, students, and, increasingly, non-experts.

The influence of the artificial intelligence community and the increasing amount 
of data available on the Web (which has led many scientists to use the Web as their 
primary “computer”) have led semantic Web researchers to focus both on formal 
aspects of semantic representation languages and on general-purpose semantic ap-
plication development. Languages are being standardized, and communities are in 
turn using those languages to build and use ontologies—specifications of concepts 
and terms and the relations between them (in the formal, machine-readable sense). 
All of the capabilities currently needed by eScience—including data integration, 
fusion, and mining; workflow development, orchestration, and execution; capture 
of provenance, lineage, and data quality; validation, verification, and trust of data 
authenticity; and fitness for purpose—need semantic representation and mediation 
if eScience is to become fully data-intensive. 

The need for more semantics in eScience also arises in part from the increasingly 
distributed and interdisciplinary challenges of modern research. For example, the 
availability of high spatial-resolution remote sensing data (such as imagery) from 
satellites for ecosystem science is simultaneously changing the nature of research 
in other scientific fields, such as environmental science. Yet ground-truthing with 
in situ data creates an immediate data-integration challenge. Questions that arise 
for researchers who use such data include, “How can ‘point’ data be reconciled 
with various satellite data—e.g., swath or gridded—products?” “How is the spatial 

1 E.g., the Science Environment for Ecological Knowledge (SEEK) and [2]. 
2 E.g., the Marine Metadata Interoperability (MMI) project.
3 E.g., the Semantic Web Health Care and Life Sciences (HCLS) Interest Group and [3].
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registration performed?” “Do these data represent the ‘same’ thing, at the same 
vertical (as well as geographic) position or at the same time, and does that matter?” 
Another scientist, such as a biologist, might need to access the same data from a 
very different perspective, to ask questions such as, “I found this particular species 
in an unexpected location. What are the geophysical parameters—temperature, 
humidity, and so on—for this area, and how has it changed over the last weeks, 
months, years?” Answers to such questions reside in both the metadata and the 
data itself. Perhaps more important is the fact that data and information products 
are increasingly being made available via Web services, so the semantic binding 
(i.e., the meaning) we seek must shift from being at the data level to being at the 
Internet/Web service level.

Semantics adds not only well-defined and machine-encoded definitions of vo-

Figure 1. 

The Virtual Solar-Terrestrial Observatory (VSTO) provides data integration between physical 
parameters measured by different instruments. VSTO also mediates independent coordinate infor-
mation to select appropriate plotting types using a semantic eScience approach without the user 
having to know the underlying representations and structure of the data [4, 5].
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cabularies, concepts, and terms, but it also explains the interrelationships among 
them (and especially, on the Web, among different vocabularies residing in differ-
ent documents or repositories) in declarative (stated) and conditional (e.g., rule-
based or logic) forms. One of the present challenges around semantic eScience is 
balancing expressivity (of the semantic representation) with the complexity of de-
fining terms used by scientific experts and implementing the resulting systems. 
This balance is application dependent, which means there is no one-approach-fits-
all solution. In turn, this implies that a peer relationship is required between physi-
cal scientists and computer scientists, and between software engineers and data 
managers and data providers.

The last few years have seen significant development in Web-based (i.e., XML) 
markup languages, including stabilization and standardization. Retrospective data 
and their accompanying catalogs are now provided as Web services, and real-time and 
near-real-time data are becoming standardized as sensor Web services are emerging. 
This means that diverse datasets are now widely available. Clearinghouses for such 
service registries, including the Earth Observing System Clearinghouse (ECHO) 
and the Global Earth Observation System of Systems (GEOSS) for Earth science, 
are becoming populated, and these complement comprehensive inventory catalogs 
such as NASA’s Global Change Master Directory (GCMD). However, these registries 
remain largely limited to syntax-only representations of the services and underlying 
data. Intensive human effort—to match inputs, outputs, and preconditions as well as 
the meaning of methods for the services—is required to utilize them.

Project and community work to develop data models to improve lower-level in-
teroperability is also increasing. These models expose domain vocabularies, which 
is helpful for immediate domains of interest but not necessarily for crosscutting 
areas such as Earth science data records and collections. As noted in reports from 
the international level to the agency level, data from new missions, together with 
data from existing agency sources, are increasingly being used synergistically with 
other observing and modeling sources. As these data sources are made available as 
services, the need for interoperability among differing vocabularies, services, and 
method representations remains, and the limitations of syntax-only (or lightweight 
semantics, such as coverage) become clear. Further, as demand for information 
products (representations of the data beyond pure science use) increases, the need 
for non-specialist access to information services based on science data is rapidly 
increasing. This need is not being met in most application areas.

Those involved in extant efforts (noted earlier, such as solar-terrestrial physics, 
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ecology, ocean and marine sciences, healthcare, and life sciences) have made the 
case for interoperability that moves away from reliance on agreements at the data-
element, or syntactic, level toward a higher scientific, or semantic, level. Results 
from such research projects have demonstrated these types of data integration ca-
pabilities in interdisciplinary and cross-instrument measurement use. Now that 
syntax-only interoperability is no longer state-of-the-art, the next logical step is to 
use the semantics to begin to enable a similar level of semantic support at the data-
as-a-service level.

Despite this increasing awareness of the importance of semantics to data- 
intensive eScience, participation from the scientific community to develop the par-
ticular requirements from specific science areas has been inadequate. Scientific re-
searchers are growing ever more dependent on the Web for their data needs, but to 
date they have not yet created a coherent agenda for exploring the emerging trends 
being enabled by semantic technologies and for interacting with Semantic Web 
researchers. To help create such an agenda, we need to develop a multi-disciplinary 
field of semantic eScience that fosters the growth and development of data-intensive 
scientific applications based on semantic methodologies and technologies, as well 
as related knowledge-based approaches. To this end, we issue a four-point call to 
action:

•	Researchers	in	science	must	work	with	colleagues	in	computer	science	and	in-
formatics to develop field-specific requirements and to implement and evaluate 
the languages, tools, and applications being developed for semantic eScience.

•	 Scientific	and	professional	societies	must	provide	the	settings	in	which	the	
needed rich interplay between science requirements and informatics capabili-
ties can be realized, and they must acknowledge the importance of this work 
in career advancement via citation-like metrics.

•	Funding	agencies	must	increasingly	target	the	building	of	communities	of	prac-
tice, with emphasis on the types of interdisciplinary teams of researchers and 
practitioners that are needed to advance and sustain semantic eScience efforts.

•	All	parties—scientists,	societies,	and	funders—must	play	a	role	in	creating	
governance around controlled vocabularies, taxonomies, and ontologies that 
can be used in scientific applications to ensure the currency and evolution of 
knowledge encoded in semantics.
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Although early efforts are under way in all four areas, much more must be done. 
The very nature of dealing with the increasing complexity of modern science de-
mands it.
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ince the advent of computing, the world has experi-
enced an information “big bang”: an explosion of data. 
The amount of information being created is increasing at 
an exponential rate. Since 2003, digital information has 

accounted for 90 percent of all information produced [1], vastly 
exceeding the amount of information on paper and on film. One of 
the greatest scientific and engineering challenges of the 21st cen-
tury will be to understand and make effective use of this growing 
body of information. Visual data analysis, facilitated by interactive 
interfaces, enables the detection and validation of expected results 
while also enabling unexpected discoveries in science. It allows 
for the validation of new theoretical models, provides comparison 
between models and datasets, enables quantitative and qualitative 
querying, improves interpretation of data, and facilitates decision 
making. Scientists can use visual data analysis systems to explore 
“what if” scenarios, define hypotheses, and examine data using 
multiple perspectives and assumptions. They can identify con-
nections among large numbers of attributes and quantitatively as-
sess the reliability of hypotheses. In essence, visual data analysis 
is an integral part of scientific discovery and is far from a solved 
problem. Many avenues for future research remain open. In this 
article, we describe visual data analysis topics that will receive at-
tention in the next decade [2, 3].

Visualization for  
Data-Intensive Science



SCIENTIFIC INFRASTRUCTURE1 5 4

visus: Progressive streamiNg for scalable Data exPloratioN

In recent years, computational scientists with access to the world’s largest super-
computers have successfully simulated a number of natural and man-made phe-
nomena with unprecedented levels of detail. Such simulations routinely produce 
massive amounts of data. For example, hydrodynamic instability simulations per-
formed at Lawrence Livermore National Laboratory (LLNL) in early 2002 produced 
several tens of terabytes of data, as shown in Figure 1. This data must be visualized 
and analyzed to verify and validate the underlying model, understand the phenom-
enon in detail, and develop new insights into its fundamental physics. Therefore, 
both visualization and data analysis algorithms require new, advanced designs that 
enable high performance when dealing with large amounts of data.

Data-streaming techniques and out-of-core computing specifically address the  
issues of algorithm redesign and data layout restructuring, which are neces-
sary to enable scalable processing of massive amounts of data. For example, 
space-filling curves have been used to develop a static indexing scheme called 
ViSUS,1 which produces a data layout that enables the hierarchical traversal of n- 
dimensional regular grids. Three features make this approach particularly attrac-
tive: (1) the order of the data is independent of the parameters of the physical 
hardware (a cache-oblivious approach), (2) conversion from Z-order used in clas-
sical database approaches is achieved using a simple sequence of bit-string ma-
nipulations, and (3) it does not introduce any data replication. This approach has 

Figure 1. 

Interactive visualization of four timesteps of the 11523 simulation of a Rayleigh-Taylor instability. 
Gravity drives the mixing of a heavy fluid on top of a lighter one. Two envelope surfaces capture 
the mixing region. 

perturbed
interface

gravitational force drives mixing

heavy fluid

light fluid

t=0 t=200 t=400 t=700

1 www.pascucci.org/visus
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been used for direct streaming and real-time monitoring of large-scale simulations 
during execution [4].

Figure 2 shows the ViSUS streaming infrastructure streaming LLNL simulation 
codes and visualizing them in real time on the Blue Gene/L installation at the Su-
percomputing 2004 exhibit (where Blue Gene/L was introduced as the new fastest 
supercomputer in the world). The extreme scalability of this approach allows the 
use of the same code base for a large set of applications while exploiting a wide 
range of devices, from large powerwall displays to workstations, laptop computers, 
and handheld devices such as the iPhone. 

Generalization of this class of techniques to the case of unstructured meshes re-
mains a major problem. More generally, the fast evolution and growing diversity of 
hardware pose a major challenge in the design of software infrastructures that are 
intrinsically scalable and adaptable to a variety of computing resources and running 
conditions. This poses theoretical and practical questions that future researchers in 
visualization and analysis for data-intensive applications will need to address.

vistrails: ProveNaNce aND Data exPloratioN

Data exploration is an inherently creative process that requires the researcher to 
locate relevant data, visualize the data and discover relationships, collaborate with 

Figure 2. 

Scalability of the ViSUS infrastructure, which is used for visualization in a variety of applications 
(such as medical imaging, subsurface modeling, climate modeling, microscopy, satellite imaging, 
digital photography, and large-scale scientific simulations) and with a wide range of devices (from 
the iPhone to the powerwall). 
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peers while exploring solutions, and disseminate results. Given the volume of data 
and complexity of analyses that are common in scientific exploration, new tools are 
needed and existing tools should be extended to better support creativity.

The ability to systematically capture provenance is a key requirement for these 
tools. The provenance (also referred to as the audit trail, lineage, or pedigree) of a 
data product contains information about the process and data used to derive the 
data product. The importance of keeping provenance for data products is well 
recognized in the scientific community [5, 6]. It provides important documen- 
tation that is key to preserving the data, determining its quality and author- 
ship, and reproducing and validating the results. The availability of provenance 
also supports reflective reasoning, allowing users to store temporary results,  
make inferences from stored knowledge, and follow chains of reasoning back- 
ward and forward.

VisTrails2 is an open source system that we designed to support exploratory 
computational tasks such as visualization, data mining, and integration. VisTrails 
provides a comprehensive provenance management infrastructure and can be eas-
ily combined with existing tools and libraries. A new concept we introduced with 
VisTrails is the notion of provenance of workflow evolution [7]. In contrast to previous 
workflow and visualization systems, which maintain provenance only for derived 
data products, VisTrails treats the workflows (or pipelines) as first-class data items 
and keeps their provenance. VisTrails is an extensible system. Like workflow sys-
tems, it allows pipelines to be created that combine multiple libraries. In addition, 
the VisTrails provenance infrastructure can be integrated with interactive tools, 
which cannot be easily wrapped in a workflow system [8]. 

Figure 3 shows an example of an exploratory visualization using VisTrails. In 
the center, the visual trail, or vistrail, captures all modifications that users apply 
to the visualizations. Each node in the vistrail tree corresponds to a pipeline, and 
the edges between two nodes correspond to changes applied to transform the par-
ent pipeline into the child (e.g., through the addition of a module or a change to a 
parameter value). The tree-based representation allows a scientist to return to a 
previous version in an intuitive way, undo bad changes, compare workflows, and be 
reminded of the actions that led to a particular result. 

Ad hoc approaches to data exploration, which are widely used in the scientific 
community, have serious limitations. In particular, scientists and engineers need 

2 http://vistrails.sci.utah.edu
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to expend substantial effort managing data (e.g., scripts that encode computational 
tasks, raw data, data products, images, and notes) and need to record provenance 
so that basic questions can be answered, such as: Who created the data product 
and when? When was it modified, and by whom? What process was used to create 
it? Were two data products derived from the same raw data? This process is not 
only time consuming but error prone. The absence of provenance makes it hard 
(and sometimes impossible) to reproduce and share results, solve problems collab-
oratively, validate results with different input data, understand the process used to 
solve a particular problem, and reuse the knowledge involved in the data analysis 
process. It also greatly limits the longevity of the data product. Without precise and 
sufficient information about how it was generated, its value is greatly diminished. 
Visualization systems aimed at the scientific domain need to provide a flexible 

Figure 3. 

An example of an exploratory visualization for studying celestial structures derived from cosmo-
logical simulations using VisTrails. Complete provenance of the exploration process is displayed as 
a “vistrail.” Detailed metadata are also stored, including free-text notes made by the scientist, the 
date and time the workflow was created or modified, optional descriptive tags, and the name of the 
person who created it.
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framework that not only enables scientists to perform complex analyses over large 
datasets but also captures detailed provenance of the analysis process. 

Figure 4 shows ParaView3 (a data analysis and visualization tool for extreme-

Figure 4. 

Representing provenance as a series of actions that modify a pipeline makes visualizing the differ-
ences between two workflows possible. The difference between two workflows is represented in a 
meaningful way, as an aggregation of the two. This is both informative and intuitive, reducing the 
time it takes to understand how two workflows are functionally different.

3 www.paraview.org
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ly large datasets) and the VisTrails Provenance Explorer transparently capturing 
a complete exploration process. The provenance capture mechanism was imple-
mented by inserting monitoring code in ParaView’s undo/redo mechanism, which 
captures changes to the underlying pipeline specification. Essentially, the action 
on top of the undo stack is added to the vistrail in the appropriate place, and undo 
is reinterpreted to mean “move up the version tree.” Note that the change-based 
representation is both simple and compact—it uses substantially less space than the 
alternative approach of storing multiple instances, or versions, of the state.

flow visualizatioN tecHNiques

A precise qualitative and quantitative assessment of three-dimensional transient 
flow phenomena is required in a broad range of scientific, engineering, and medical 
applications. Fortunately, in many cases the analysis of a 3-D vector field can be re-
duced to the investigation of the two-dimensional structures produced by its interac-
tion with the boundary of the object under consideration. Typical examples of such 
analysis for fluid flows include airfoils and reactors in aeronautics, engine walls and 
exhaust pipes in the automotive industry, and rotor blades in turbomachinery.

Other applications in biomedicine focus on the interplay between bioelectric 
fields and the surface of an organ. In each case, numerical simulations of increas-
ing size and sophistication are becoming instrumental in helping scientists and 
engineers reach a deeper understanding of the flow properties that are relevant to 
their task. The scientific visualization community has concentrated a significant 
part of its research efforts on the design of visualization methods that convey local 
and global structures that occur at various spatial and temporal scales in transient 
flow simulations. In particular, emphasis has been placed on the interactivity of the 
corresponding visual analysis, which has been identified as a critical aspect of the 
effectiveness of the proposed algorithms.

A recent trend in flow visualization research is to use GPUs to compute image 
space methods to tackle the computational complexity of visualization techniques 
that support flows defined over curved surfaces. The key feature of this approach 
is the ability to efficiently produce a dense texture representation of the flow with-
out explicitly computing a surface parameterization. This is achieved by projecting 
onto the image plane the flow corresponding to the visible part of the surface, al-
lowing subsequent texture generation in the image space through backward inte-
gration and iterative blending. Although the use of partial surface parameterization 
obtained by projection results in an impressive performance gain, texture patterns 
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stretching beyond the visible part of the self-occluded surface become incoherent 
due to the lack of full surface parameterization. 

To address this problem, we have introduced a novel scheme that fully supports 
the creation of high-quality texture-based visualizations of flows defined over ar-
bitrary curved surfaces [9]. Called Flow Charts, our scheme addresses the issue 
mentioned previously by segmenting the surface into overlapping patches, which 
are then individually parameterized into charts and packed in the texture domain. 
The overlapped region provides each local chart with a smooth representation of its 
direct vicinity in the flow domain as well as with the inter-chart adjacency infor-
mation, both of which are required for accurate and non-disrupted particle advec-
tion. The vector field and the patch adjacency relation are naturally represented 
as textures, enabling efficient GPU implementation of state-of-the-art flow texture 
synthesis algorithms such as GPUFLIC and UFAC. 

Figure 5 shows the result of a simulation of a high-speed German Intercity- 
Express (ICE) train traveling at a velocity of about 250 km/h with wind blowing 
from the side at an incidence angle of 30 degrees. The wind causes vortices to form 
on the lee side of the train, creating a drop in pressure that adversely affects the 
train’s ability to stay on the track. These flow structures induce separation and 
attachment flow patterns on the train surface. They can be clearly seen in the pro-
posed images close to the salient edges of the geometry. 

Figure 5. 

Simulation of a high-speed ICE train. Left: The GPUFLIC result. Middle: Patch configurations. 
Right: Charts in texture space.
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The effectiveness of a physically based formulation can be seen with the  
Karman dataset (Figure 6), a numerical simulation of the classical Von Kármán 
vortex street phenomenon, in which a repeating pattern of swirling vortices 
is caused by the separation of flow passing over a circular-shaped obstacle. The  
visualization of dye advection is overlaid on dense texture visualization that shows 
instantaneous flow structures generated by GPUFLIC. The patterns generated by 
the texture-advection method are hazy due to numerical diffusion and loss of mass. 
In a level-set method, intricate structures are lost because of the binary dye/back-
ground threshold. Thanks to the physically based formulation [10], the visualiza-
tion is capable of accurately conveying detailed structures not shown using the 
traditional texture-advection method.

future Data-iNteNsive visualizatioN cHalleNges

Fundamental advances in visualization techniques and systems must be made to 
extract meaning from large and complex datasets derived from experiments and 
from upcoming petascale and exascale simulation systems. Effective data analysis 
and visualization tools in support of predictive simulations and scientific knowl-
edge discovery must be based on strong algorithmic and mathematical foundations 

Figure 6. 

Visualization of the Karman dataset using dye advection. Left column: Physically based dye 
advection. Middle column: Texture advection method. Right column: Level-set method. The time 
sequence is from top to bottom.
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and must allow scientists to reliably characterize salient features in their data. New 
mathematical methods in areas such as topology, high-order tensor analysis, and 
statistics will constitute the core of feature extraction and uncertainty modeling 
using formal definition of complex shapes, patterns, and space-time distributions. 
Topological methods are becoming increasingly important in the development of 
advanced data analysis because of their expressive power in describing complex 
shapes at multiple scales. The recent introduction of robust combinatorial tech-
niques for topological analysis has enabled the use of topology—not only for pre-
sentation of known phenomena but for the detection and quantification of new 
features of fundamental scientific interest.

Our current data-analysis capabilities lag far behind our ability to produce simu-
lation data or record observational data. New visual data analysis techniques will 
need to dynamically consider high-dimensional probability distributions of quanti-
ties of interest. This will require new contributions from mathematics, probability, 
and statistics. The scaling of simulations to ever-finer granularity and timesteps 
brings new challenges in visualizing the data that is generated. It will be crucial to 
develop smart, semi-automated visualization algorithms and methodologies to help 
filter the data or present “summary visualizations” to enable scientists to begin ana-
lyzing the immense datasets using a more top-down methodological path. The abil-
ity to fully quantify uncertainty in high-performance computational simulations 
will provide new capabilities for verification and validation of simulation codes. 
Hence, uncertainty representation and quantification, uncertainty propagation, 
and uncertainty visualization techniques need to be developed to provide scientists 
with credible and verifiable visualizations.

New approaches to visual data analysis and knowledge discovery are needed to 
enable researchers to gain insight into this emerging form of scientific data. Such 
approaches must take into account the multi-model nature of the data; provide the 
means for scientists to easily transition views from global to local model data; al-
low blending of traditional scientific visualization and information visualization; 
perform hypothesis testing, verification, and validation; and address the challenges 
posed by the use of vastly different grid types and by the various elements of the 
multi-model code. Tools that leverage semantic information and hide details of 
dataset formats will be critical to enabling visualization and analysis experts to 
concentrate on the design of these approaches rather than becoming mired in the 
trivialities of particular data representations [11].
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sci enti f ic i n fr astruc tu r e

Computer systems have become a vital part of the mod-
ern research environment, supporting all aspects of the 
research lifecycle [1]. The community uses the terms 
“eScience” and “eResearch” to highlight the important 

role of computer technology in the ways we undertake research, 
collaborate, share data and documents, submit funding applica-
tions, use devices to automatically and accurately collect data 
from experiments, deploy new generations of microscopes and 
telescopes to increase the quality of the acquired imagery, and 
archive everything along the way for provenance and long-term 
preservation [2, 3].

However, the same technological advances in data capture, 
generation, and sharing and the automation enabled by computers 
have resulted in an unprecedented explosion in data—a situation 
that applies not only to research but to every aspect of our digi-
tal lives. This data deluge, especially in the scientific domain, has 
brought new research infrastructure challenges, as highlighted by 
Jim Gray and Alex Szalay [4]. The processing, data transfer, and 
storage demands are far greater today than just a few years ago. 
It is no surprise that we are talking about the emergence of a new 
research methodology—the “fourth paradigm”—in science.

SAvAS  
PAR ASTATIDIS 
Microsoft

A Platform for All That We 
Know: Creating a Knowledge-
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tHe fourtH ParaDigm 

Through the use of technology and automation, we are trying to keep up with the 
challenges of the data deluge. The emergence of the Web as an application, data 
sharing, and collaboration platform has broken many barriers in the way research 
is undertaken and disseminated. The emerging cloud computing infrastructures 
(e.g., Amazon’s1) and the new generation of data-intensive computing platforms (e.g., 
DISC,2 Google’s MapReduce,3 Hadoop,4 and Dryad5) are geared toward managing 
and processing large amounts of data. Amazon is even offering a “sneakernet”6-like 
service7 to address the problem of transferring large amounts of data into its cloud. 
Companies such as Google, Yahoo!, and Microsoft are demonstrating that it is pos-
sible to aggregate huge amounts of data from around the Web and store, manage, 
and index it and then build engaging user experiences around it.

The primary focus of the current technologies addresses only the first part of the 
data-information-knowledge-wisdom spectrum.8 Computers have become efficient 
at storing, managing, indexing, and computing (research) data. They are even able 
to represent and process some of the information hidden behind the symbols used 
to encode that data. Nevertheless, we are still a long way from having computer 
systems that can automatically discover, acquire, organize, analyze, correlate, in-
terpret, infer, and reason over information that’s on the Internet, that’s hidden on 
researchers’ hard drives, or that exists only in our brains. We do not yet have an 
infrastructure capable of managing and processing knowledge on a global scale, 
one that can act as the foundation for a generation of knowledge-driven services 
and applications.

So, if the fourth paradigm is about data and information, it is not unreasonable 
to foresee a future, not far away, where we begin thinking about the challenges of 
managing knowledge and machine-based understanding on a very large scale. We 
researchers will probably be the first to face this challenge.

1 http://aws.amazon.com
2 www.pdl.cmu.edu/DISC 
3 http://labs.google.com/papers/mapreduce.html 
4 http://hadoop.apache.org 
5 http://research.microsoft.com/en-us/projects/dryad 
6 http://en.wikipedia.org/wiki/Sneakernet
7 http://aws.amazon.com/importexport
8 http://en.wikipedia.org/wiki/DIKW
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kNowleDge-orieNteD researcH iNfrastructures

The work by the Semantic Web9 community has resulted in a number of technolo-
gies to help with data modeling, information representation, and the interexchange 
of semantics, always within the context of a particular application domain. Given 
the formal foundations of some of these technologies (e.g., the Web Ontology Lan-
guage, or OWL), it has been possible to introduce reasoning capabilities, at least for 
some specific bounded domains (e.g., BioMoby10). 

Moving forward, the work of the Semantic Web community will continue to 
play a significant role in the interoperable exchange of information and knowledge. 
More importantly, as representation technologies such as RDF (Resource Descrip-
tion Framework), OWL, and microformats become widely accepted, the focus will 
transition to the computational aspects of semantic understanding and knowledge. 
The challenge we will face is the automation of the aggregation and combination of 
huge amounts of semantically rich information and, very crucially, the processes by 
which that information is generated and analyzed. Today, we must start thinking 
about the technologies we’ll need in order to semantically describe, analyze, and 
combine the information and the algorithms used to produce it or consume it, and 
to do so on a global scale. If today’s cloud computing services focus on offering a 
scalable platform for computing, tomorrow’s services will be built around the man-
agement of knowledge and reasoning over it.

We are already seeing some attempts to infer knowledge based on the world’s 
information. Services such as OpenCyc,11 Freebase,12 Powerset,13 True Knowl-
edge,14 and Wolfram|Alpha15 demonstrate how facts can be recorded in such a way 
that they can be combined and made available as answers to a user’s questions. 
Wolfram|Alpha, in particular, has made use of domain experts to encode the com-
putational aspects of processing the data and information that they have aggregat-
ed from around the Web and annotated. It demonstrates how a consumer-oriented 
service can be built on top of a computational infrastructure in combination with 
natural language processing. It is likely that many similar services will emerge in 
the near future, initially targeting specialized technical/academic communities 

9 http://en.wikipedia.org/wiki/Semantic_Web 
10 www.biomoby.org  
11 www.opencyc.org 
12 www.freebase.com 
13 www.powerset.com  
14 www.trueknowledge.com
15 www.wolframalpha.com
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and later expanding to all domains of interest. As with other service-oriented ap-
plications on the Web, the incorporation of computational knowledge services for 
scientists will be an important aspect of any research cyberinfrastructure. 

The myGrid16 and myExperiment17 projects demonstrate the benefits of captur-
ing and then sharing, in a semantically rich way, the definitions of workflows in sci-
ence. Such workflows effectively document the process by which research-related 
information is produced and the steps taken toward reaching (or unsuccessfully 
trying to reach) a conclusion. Imagine the possibilities of expanding this idea to 
all aspects of our interaction with information. Today, for example, when someone 
enters “GDP of Brazil vs. Japan” as a query in Wolfram|Alpha, the engine knows 
how to interpret the input and produce a comparison graph of the GDP (gross do-
mestic product) of the two countries. If the query is “Ford,” the engine makes an as-
sumption about its interpretation but also provides alternatives (e.g., “person” if the 
intended meaning might be Henry Ford or Gerald Rudolph Ford, Jr., vs. “business 
entity” if the intended meaning might be the Ford Motor Company). The context 
within which specific information is to be interpreted is important in determining 
what computational work will be performed. The same ideas could be implemented 
as part of a global research infrastructure, where Wolfram|Alpha could be one of the 
many available interoperable services that work together to support researchers.

The research community would indeed benefit greatly from a global infrastruc-
ture whose focus is on knowledge sharing and in which all applications and ser-
vices are built with knowledge exchange and processing at their core. This is not 
to suggest that there should be yet another attempt to unify and centrally manage 
all knowledge representation. Scientists will always be better at representing and 
reasoning over their own domain. However, a research infrastructure should ac-
commodate all domains and provide the necessary glue for information to be cross-
linked, correlated, and discovered in a semantically rich manner.

Such an infrastructure must provide the right set of services to not only allow 
access to semantically rich information but also expose computational services that 
operate on the world’s knowledge. Researchers would be able to ask questions re-
lated to their domain of expertise, and a sea of knowledge would immediately be ac-
cessible to them. The processes of acquiring and sharing knowledge would be auto-
mated, and associated tools (e.g., a word processor that records an author’s intended 

16 www.mygrid.org.uk  
17 www.myexperiment.org
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use of a term18) would make it even easier to analyze, do research, and publish 
results. Natural language processing will aid in the interaction with the knowledge-
based ecosystem of information, tools, and services, as shown in Figure 1.

 Note that this proposed research infrastructure would not attempt to realize 
artificial intelligence (AI)—despite the fact that many of the technologies from the 
Semantic Computing19 community (from data modeling and knowledge represen-
tation to natural language processing and reasoning) have emerged from work in 

18 http://ucsdbiolit.codeplex.com
19 A distinction is assumed between the general approach of computing based on semantic technologies (machine 
learning, neural networks, ontologies, inference, etc.) and the Semantic Web as described in [5] and [6], which re-
fers to a specific ecosystem of technologies, such as RDF and OWL. The Semantic Web technologies are considered 
to be just some of the many tools at our disposal when building semantics-based and knowledge-based solutions.
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High-level view of a research infrastructure that brings together knowledge bases and computa-
tional services.
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the AI field over the decades. The primary focus of the proposed cyberinfrastruc-
ture is automated knowledge management rather than intelligence.

masHiNg uP kNowleDge

Interdisciplinary research has gained a lot of momentum, especially as the result 
of eScience and cyberinfrastructure activities. Technology has played an enabling 
role by primarily supporting collaboration, sharing of information, and data man-
agement within the context of a research project. In the future, researchers should 
not have to think about how their questions, assumptions, theories, experiments, 
or data correlate with existing knowledge across disciplines in one scientific do-
main or even across domains.

The process of combining information from existing scientific knowledge gener-
ated by different researchers at different times and in different locations, including 
the specific methodologies that were followed to produce conclusions, should be 
automatic and implicitly supported by the research infrastructure.20 For example, 
it should be trivial for a young Ph.D. researcher in chemistry to pose work items 
to a computer as natural language statements like “Locate 100,000 molecules that 
are similar to the known HIV protease inhibitors, then compute their electronic 
properties and dock them into viral escape mutants.” This illustrates the use of 
natural language processing and also the need for researchers to agree on vocabu-
laries for capturing knowledge—something already occurring in many scientific 
domains through the use of Semantic Web technologies. Furthermore, the example 
illustrates the need to be able to capture the computational aspects of how existing 
knowledge is processed and how new facts are generated.

The research community has already started working on bringing the existing 
building blocks together to realize a future in which machines can further assist 
researchers in managing and processing knowledge. As an example, the oreChem21   
project aims to automate the process by which chemistry-related knowledge cap-
tured in publications is extracted and represented in machine-processable formats, 
such as the Chemistry Markup Language (CML). Through the use of chemistry- 
related ontologies, researchers will be able to declaratively describe the computa-
tions they would like to perform over the body of machine-processable knowledge.

20 Assuming that open access to research information has become a reality.  
21 http://research.microsoft.com/orechem
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While projects such as oreChem do not attempt to realize a large-scale infra-
structure for computable scientific knowledge, they do represent the first investiga-
tions toward such a vision. Going forward, the boundaries of domains will become 
less rigid so that cross-discipline knowledge (computational) mashups can become 
an important aspect of any semantics-enabled, knowledge-driven research infra-
structure. The ability to cross-reference and cross-correlate information, facts, as-
sumptions, and methodologies from different research domains on a global scale 
will be a great enabler for our future researchers.

a call to actioN

Today, platforms that offer implementations of the MapReduce computational pat-
tern (e.g., Hadoop and Dryad) make it easy for developers to perform data-intensive 
computations at scale. In the future, it will be very important to develop equivalent 
platforms and patterns to support knowledge-related actions such as aggregation, 
acquisition, inference, reasoning, and information interpretation. We should aim 
to provide scientists with a cyberinfrastructure on top of which it should be easy  
to build a large-scale application capable of exploiting the world’s computer- 
represented scientific knowledge.

The interoperable exchange of information, whether representing facts or pro-
cesses, is vital to successfully sharing knowledge. Communities need to come to-
gether—and many of them are already doing so—in order to agree on vocabularies 
for capturing facts and information specific to their domains of expertise. Research 
infrastructures of the future will create the necessary links across such vocabular-
ies so that information can be interlinked as part of a global network of facts and 
processes, as per Tim Berners-Lee’s vision for the Semantic Web. 

The future research infrastructures, which will be knowledge driven, will look 
more like Vannevar Bush’s memex than today’s data-driven computing machines. 
As Bush said, “Wholly new forms of encyclopedias will appear, ready made with a 
mesh of associative trails running through them, ready to be dropped into the mem- 
ex and there amplified.” [7] We are not far from that vision today.

ackNowleDgmeNts 
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sch o l ar ly com mu n icatio n

J im gray’s passion for escience was admired by many, but 
few were aware of his deep desire to apply computing to 
increase the productivity of scholars and accelerate the pace 
of discovery and innovation for scientific researchers. Sev-
eral authors in Part 4 of this book knew and worked with 

Jim. All of the authors not only share his vision but are actively 
endeavoring to make it a reality.

Lynch introduces how the Fourth Paradigm applies to the field 
of scholarly communication. His article is organized around a cen-
tral question: what are the effects of data-intensive science on the 
scientific record? He goes on to ask: what has become of the schol-
arly record—an ever-changing, ever-evolving set of data, publica-
tions, and related supporting materials of staggering volume? In 
this new world, not only does the individual scientist benefit (as 
the end user), but through data-intensive computing we can expect 
more cross-domain ventures that accelerate discovery, highlight 
new connections, and suggest unforeseen links that will speed sci-
ence forward. 

Ginsparg delves into the nuts and bolts of the rapid transfor-
mation of scholarly publications. He references key examples of 
cutting-edge work and promising breakthroughs across multiple 
disciplines. In the process, he notes the siloed nature of the sci-
ences and encourages us to learn from one another and adopt best 
practices across discipline boundaries. He also provides a helpful 

lEE DirKs |  Microsoft Research
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roadmap that outlines an ideal route to a vision he shared with Jim Gray of “com-
munity-driven scientific knowledge curation and creation.”

Van de Sompel and Lagoze stress that academics have yet to realize the full 
potential benefits of technology for scholarly communication. The authors make 
a crucial point that the hardest issues are social or dependent on humans, which 
means they cannot be easily resolved by new applications and additional silicon. 
They call for the development of open standards and interoperability protocols to 
help mitigate this situation. 

The issues of sharing scientific data at an international level are addressed by 
Fitzgerald, Fitzgerald, and Pappalardo. Scientists sometimes encounter the greatest 
constraints at the national or regional level, which prevent them from participating 
in the global scientific endeavor. Citing a specific example, the authors appeal for 
coordination beyond the scientific community and recommend that policymakers 
work to avoid introducing impediments into the system.

Wilbanks puts a fine point on a common theme throughout this section: in 
many ways, scientists are often unwittingly responsible for holding back science. 
Even though, as professionals, we envision, instrument, and execute on innovative 
scientific endeavors, we do not always actually adopt or fully realize the systems we 
have put in place. As an amalgamated population of forward-thinking researchers, 
we often live behind the computational curve. He notes that it is crucial for con-
nectivity to span all scientific fields and for multidisciplinary work and cooperation 
across domains, in turn, to fuel revolutionary advancements. 

Hannay closes the section by highlighting the interconnectedness of our net-
worked world despite lingering social barriers between various scientific fields. He 
notes that science’s gradual shift from a cottage enterprise to a large-scale industry 
is part of the evolution of how we conduct science. He provides intriguing examples 
from around the world of research that can point a way to the future of Web-based 
communication, and he declares that we are living in an awkward age immediately 
prior to the advent of semantic reality and interconnectedness.

Research is evolving from small, autonomous scholarly guilds to larger, more en-
lightened, and more interconnected communities of scientists who are increasingly 
interdependent upon one another to move forward. In undertaking this great en-
deavor together—as Jim envisioned—we will see science, via computation, advance 
further and faster than ever before.
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sch o l ar ly com mu n icatio n

in the latter part of his career, Jim Gray led the thinking of 
a group of scholars who saw the emergence of what they char-
acterized as a fourth paradigm of scientific research. In this 
essay, I will focus narrowly on the implications of this fourth 

paradigm, which I will refer to as “data-intensive science” [1], for 
the nature of scientific communication and the scientific record.

Gray’s paradigm joins the classic pair of opposed but mutually 
supporting scientific paradigms: theory and experimentation. The 
third paradigm—that of large-scale computational simulation—
emerged through the work of John von Neumann and others in 
the mid-20th century. In a certain sense, Gray’s fourth paradigm 
provides an integrating framework that allows the first three to in-
teract and reinforce each other, much like the traditional scientific 
cycle in which theory offered predictions that could be experimen-
tally tested, and these experiments identified phenomena that re-
quired theoretical explanation. The contributions of simulation to 
scientific progress, while enormous, fell short of their initial prom-
ise (for example, in long-term weather prediction) in part because 
of the extreme sensitivity of complex systems to initial conditions 
and chaotic behaviors [2]; this is one example in which simulation, 
theory, and experiment in the context of massive amounts of data 
must all work together. 

To understand the effects of data-intensive science on the  
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scientific record,1 it is first necessary to review the nature of that record, what it 
is intended to accomplish, and where it has and hasn’t succeeded in meeting the 
needs of the various paradigms and the evolution of science. 

To a first approximation, we can think of the modern scientific record, dating 
from the 17th century and closely tied to the rise of both science and scholarly  
societies, as comprising an aggregation of independent scientific journals and con-
ference presentations and proceedings, plus the underlying data and other evidence 
to support the published findings. This record is stored in a highly distributed and, 
in some parts, highly redundant fashion across a range of libraries, archives, and 
museums around the globe. The data and evidentiary components have expanded 
over time: written observational records too voluminous to appear in journals have 
been stored in scientific archives, and physical evidence held in natural history mu-
seums is now joined by a vast array of digital datasets, databases, and data archives 
of various types, as well as pre-digital observational records (such as photographs) 
and new collections of biological materials. While scientific monographs and some 
specialized materials such as patents have long been a limited but important part of 
the record, “gray literature,” notably technical reports and preprints, have assumed 
greater importance in the 20th century. In recent years, we have seen an explosion 
of Web sites, blogs, video clips, and other materials (generally quite apart from the 
traditional publishing process) become a significant part of this record, although 
the boundaries of these materials and various problems related to their persistent 
identification, archiving and continued accessibility, vetting, and similar properties 
have been highly controversial. 

The scientific record is intended to do a number of things. First and foremost, 
it is intended to communicate findings, hypotheses, and insights from one person 
to another, across space and across time. It is intended to organize: to establish 
common nomenclature and terminology, to connect related work, and to develop 
disciplines. It is a vehicle for building up communities and for a form of large-scale  
collaboration across space and time. It is a means of documenting, managing, and 
often, ultimately, resolving controversies and disagreements. It can be used to estab-
lish precedence for ideas and results, and also (through citation and bibliometrics) 
to offer evidence for the quality and significance of scientific work. The scientific 
record is intended to be trustworthy, in several senses. In the small and in the near 

1 For brevity and clearest focus, I’ve limited the discussion here to science. But just as it’s clear that eScience is only 
a special case of eResearch and data-intensive science is a form of data-intensive scholarship, many of the points 
here should apply, with some adaptation, to the humanities and the social sciences.
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term, pre-publication peer review, editorial and authorial reputation, and transpar-
ency in reporting results are intended to ensure confidence in the correctness of 
individual articles. In the broader sense, across spans of time and aggregated col-
lections of materials, findings are validated and errors or deliberate falsifications, 
particularly important ones, are usually identified and corrected by the community 
through post-publication discussion or formal review, reproduction, reuse and ex-
tension of results, and the placement of an individual publication’s results in the 
broader context of scientific knowledge. 

A very central idea that is related simultaneously to trustworthiness and to the 
ideas of collaboration and building upon the work of others is that of reproducibility 
of scientific results. While this is an ideal that has often been given only reluctant 
practical support by some scientists who are intent on protecting what they view as 
proprietary methods, data, or research leads, it is nonetheless what fundamentally 
distinguishes science from practices such as alchemy. The scientific record—not 
necessarily a single, self-contained article but a collection of literature and data 
within the aggregate record, or an article and all of its implicit and explicit “links” 
in today’s terminology—should make enough data available, and contain enough 
information about methods and practices, that another scientist could reproduce 
the same results starting from the same data. Indeed, he or she should be able to do 
additional work that helps to place the initial results in better context, to perturb 
assumptions and analytic methods, and to see where these changes lead. It is worth 
noting that the ideal of reproducibility for sophisticated experimental science often 
becomes problematic over long periods of time: reproducing experimental work 
may require a considerable amount of tacit knowledge that was part of common 
scientific practice and the technology base at the time the experiment was first 
carried out but that may be challenging and time consuming to reproduce many 
decades later. 

How well did the scientific record work during the long dominance of the first 
two scientific paradigms? In general, pretty well, I believe. The record (and the 
institutions that created, supported, and curated it) had to evolve in response to 
two major challenges. The first was mainly in regard to experimental science: as 
experiments became more complicated, sophisticated, and technologically medi-
ated, and as data became more extensive and less comprehensively reproduced as 
part of scientific publications, the linkages between evidence and writings became 
more complex and elusive. In particular, as extended computation (especially me-
chanically or electromechanically assisted computation carried out by groups of 
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human “computers”) was applied to data, difficulties in reproducibility began to 
extend far beyond access to data and understanding of methods. The affordances of 
a scholarly record based on print and physical artifacts offered little relief here; the 
best that could be done was to develop organized systems of data archives and set 
some expectations about data deposit or obligations to make data available. 

The second evolutionary challenge was the sheer scale of the scientific enter-
prise. The literature became huge; disciplines and sub-specialties branched and 
branched again. Tools and practices had to be developed to help manage this 
scale—specialized journals, citations, indices, review journals and bibliographies, 
managed vocabularies, and taxonomies in various areas of science. Yet again, given 
the affordances of the print-based system, all of these innovations seemed to be 
too little too late, and scale remained a persistent and continually overwhelming 
problem for scientists. 

The introduction of the third paradigm in the middle of the 20th century, along 
with the simultaneous growth in computational technologies supporting experi-
mental and theoretical sciences, intensified the pressure on the traditional scien-
tific record. Not only did the underlying data continue to grow, but the output of 
simulations and experiments became large and complex datasets that could only 
be summarized, rather than fully documented, in traditional publications. Worst 
of all, software-based computation for simulation and other purposes became an 
integral part of the question of experimental reproducibility.2 It’s important to rec-
ognize how long it really took to reach the point when computer hardware was rea-
sonably trustworthy in carrying out large-scale floating-point computations.3 (Even 
today, we are very limited in our ability to produce provably correct large-scale 
software; we rely on the slow growth of confidence through long and widespread 
use, preferably in a range of different hardware and platform environments. Docu-
menting complex software configurations as part of the provenance of the products 
of data-intensive science remains a key research challenge in data curation and 
scientific workflow structuring.) The better news was that computational technolo-
gies began to help with the management of the enormous and growing body of sci-

2 Actually, the ability to comprehend and reproduce extensive computations became a real issue for theoretical  
science as well; the 1976 proof of the four-color theorem in graph theory involved exhaustive computer analysis  
of a very large number of special cases and caused considerable controversy within the mathematical community 
about whether such a proof was really fully valid. A more recent example would be the proposed proof of the  
Kepler Conjecture by Thomas Hales.
3 The IEEE floating-point standard dates back to only 1985. I can personally recall incidents with major mainframe 
computers back in the 1970s and 1980s in which shipped products had to be revised in the field after significant 
errors were uncovered in their hardware and/or microcode that could produce incorrect computational results.
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entific literature as many of the organizational tools migrated to online databases 
and information retrieval systems starting in the 1970s and became ubiquitous and 
broadly affordable by the mid-1990s. 

With the arrival of the data-intensive computing paradigm, the scientific record 
and the supporting system of communication and publication have reached a Janus 
moment where we are looking both backward and forward. It has become clear 
that data and software must be integral parts of the record—a set of first-class ob-
jects that require systematic management and curation in their own right. We see 
this reflected in the emphasis on data curation and reuse in the various cyberin-
frastructure and eScience programs [3-6]. These datasets and other materials will 
be interwoven in a complex variety of ways [7] with scientific papers, now finally 
authored in digital form and beginning to make serious structural use of the new 
affordances of the digital environment, and at long last bidding a slow farewell to 
the initial model of electronic scientific journals, which applied digital storage and 
delivery technologies to articles that were essentially images of printed pages. We 
will also see tools such as video recordings used to supplement traditional descrip-
tions of experimental methods, and the inclusion of various kinds of two- or three-
dimensional visualizations. At some level, one can imagine this as the perfecting of 
the traditional scientific paper genre, with the capabilities of modern information 
technology meeting the needs of the four paradigms. The paper becomes a window 
for a scientist to not only actively understand a scientific result, but also reproduce 
it or extend it. 

However, two other developments are taking hold with unprecedented scale and 
scope. The first is the development of reference data collections, often independent 
of specific scientific research even though a great deal of research depends on these 
collections and many papers make reference to data in these collections. Many 
of these are created by robotic instrumentation (synoptic sky surveys, large-scale  
sequencing of microbial populations, combinatorial chemistry); some also intro-
duce human editorial and curatorial work to represent the best current state of 
knowledge about complex systems (the annotated genome of a given species, a  
collection of signaling pathways, etc.) and may cite results in the traditional  
scientific literature to justify or support assertions in the database. These refer-
ence collections are an integral part of the scientific record, of course, although 
we are still struggling with how best to manage issues such as versioning and the 
fixity of these resources. These data collections are used in very different ways than 
traditional papers; most often, they are computed upon rather than simply read. 
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As these reference collections are updated, the updates may trigger new computa-
tions, the results of which may lead to new or reassessed scientific results. More 
and more, at least some kinds of contributions to these reference data collections 
will be recognized as significant scholarly contributions in their own right. One 
might think of this as scientists learning to more comprehensively understand the 
range of opportunities and idioms for contributing to the scholarly record in an era 
of data and computationally intensive science. 

Finally, the scientific record itself is becoming a major object of ongoing com-
putation—a central reference data collection—at least to the extent to which copy-
right and technical barriers can be overcome to permit this [8]. Data and text min-
ing, inferencing, integration among structured data collections and papers written 
in human languages (perhaps augmented with semantic markup to help computa-
tionally identify references to particular kinds of objects—such as genes, stars, spe-
cies, chemical compounds, or places, along with their associated properties—with 
a higher degree of accuracy than would be possible with heuristic textual analysis 
algorithms), information retrieval, filtering, and clustering all help to address the 
problems of the ever-growing scale of the scientific record and the ever-increasing 
scarcity of human attention. They also help exploit the new technologies of data-
intensive science to more effectively extract results and hypotheses from the rec-
ord. We will see very interesting developments, I believe, as researchers use these 
tools to view the “public” record of science through the lens of various collections of 
proprietary knowledge (unreleased results, information held by industry for com-
mercial advantage, or even government intelligence).

In the era of data-intensive computing, we are seeing people engage the scien-
tific record in two ways. In the small, one or a few articles at a time, human beings 
read papers as they have for centuries, but with computational tools that allow 
them to move beyond the paper to engage the underlying science and data much 
more effectively and to move from paper to paper, or between paper and reference 
data collection, with great ease, precision, and flexibility. Further, these encounters 
will integrate with collaborative environments and with tools for annotation, au-
thoring, simulation, and analysis. But now we are also seeing scholars engage the 
scientific record in the large, as a corpus of text and a collection of interlinked data 
resources, through the use of a wide range of new computational tools. This en-
gagement will identify papers of interest; suggest hypotheses that might be tested 
through combinations of theoretical, experimental, and simulation investigations; 
or at times directly produce new data or results. As the balance of engagement 
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in the large and in the small shifts (today, it is still predominantly in the small, I 
believe), we will see this change many aspects of scientific culture and scientific 
publishing practice, probably including views on open access to the scientific litera-
ture, the application of various kinds of markup and the choice of authoring tools 
for scientific papers, and disciplinary norms about data curation, data sharing, and 
overall data lifecycle. Further, I believe that in the practice of data-intensive sci-
ence, one set of data will, over time, figure more prominently, persistently, and 
ubiquitously in scientific work: the scientific record itself. 
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i first met jim gray when he was the moderator of the data-
base subject area of arXiv, part of the expansion into computer 
science that arXiv initiated in 1998. Soon afterward, he was 
instrumental in facilitating the full-text harvest of arXiv by 

large-scale search engines, beginning with Google and followed 
by Microsoft and Yahoo!—previous robotic crawls of arXiv being 
overly restricted in the 1990s due to their flooding of the servers 
with requests. Jim understood the increasing role of text as a form 
of data, and the need for text to be ingestible and treatable like 
any other computable object. In 2005, he was involved in both 
arXiv and PubMed Central and expressed to me his mystification 
that while the two repositories served similar roles, they seemed 
to operate in parallel universes, not connecting in any substantive 
way. His vision was of a world of scholarly resources—text, data-
bases, and any other associated materials—that were seamlessly 
navigable and interoperable.

Many of the key open questions regarding the technological 
transformation of scholarly infrastructure were raised well over 
a decade ago, including the long-term financial model for imple-
menting quality control, the architecture of the article of the  
future, and how all of the pieces will merge into an interoperable 
whole. While answers have remained elusive, there is reason to  
expect significant near-term progress on at least the latter two 

Paul GinsParG 
Cornell University

Text in a Data-centric World
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questions. In [1], I described how the range of possibilities for large and comprehen-
sive full-text aggregations were just starting to be probed and offered the PubMed 
Central database as an exemplar of a forward-looking approach. Its full-text XML 
documents are parsed to permit multiple “related material views” for a given ar-
ticle, with links to genomic, nucleotide, inheritance, gene expression, protein, 
chemical, taxonomic, and other related databases. This methodology is now begin-
ning to spread, along with more general forms of semantic enhancement: facilitat-
ing automated discovery and reasoning, providing links to related documents and 
data, providing access to actionable data within articles, and permitting integration 
of data between articles.

A recent example of semantic enhancement by a publisher is the Royal Society 
of Chemistry’s journal Molecular BioSystems.1 Its enhanced HTML highlights terms 
in the text that are listed in chemical terminology databases and links them to 
the external database entries. Similarly, it highlights and links terms from gene, 
sequence, and cell ontologies. This textual markup is implemented by editors with 
subject-matter expertise, assisted by automated text-mining tools. An example of a 
fully automated tool for annotation of scientific terms is EMBL Germany’s Reflect,2  
which operates as an external service on any Web page or as a browser plug-in. It 
tags gene, protein, and small molecule names, and the tagged items are linked to 
the relevant sequence, structure, or interaction databases.

In a further thought experiment, Shotton et al. [2] marked up an article by hand 
using off-the-shelf technologies to demonstrate a variety of possible semantic en-
hancements—essentially a minimal set that would likely become commonplace in 
the near future. In addition to semantic markup of textual terms and live linkages 
of DOIs and other URLs where feasible, they implemented a reorderable reference 
list, a document summary including document statistics, a tag cloud of technical 
terms, tag trees of marked-up named entities grouped by semantic type, citation 
analysis (within each article), a “Citations in Context” tooltip indicating the type of 
citation (background, intellectual precedent, refutation, and so on), downloadable 
spreadsheets for tables and figures, interactive figures, and data fusion with results 
from other research articles and with contextual online maps. (See Figure 1.) They 
emphasize the future importance of domain-specific structured digital abstracts—
namely, machine-readable metadata that summarize key data and conclusions of 
articles, including a list of named entities in the article with precise database iden-

1 www.rsc.org/Publishing/Journals/mb
2 http://reflect.ws, winner of the recent Elsevier Grand Challenge (www.elseviergrandchallenge.com).
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tifiers, a list of the main results described via controlled vocabulary, and a descrip-
tion, using standard evidence codes, of the methodology employed. The use of con-
trolled vocabularies in this structured summary will enable not only new metrics 
for article relatedness but also new forms of automated reasoning.

Currently, recognition of named entities (e.g., gene names) in unstructured text 
is relatively straightforward, but reliable extraction of relationships expressed in 
conventional text is significantly more difficult. The next generation of automated 
knowledge extraction and processing tools, operating on structured abstracts and 
semantically enhanced text, will bring us that much closer to direct searching and 
browsing of “knowledge”—i.e., via synthesized concepts and their relationships. 
Further enhancements will include citation network analysis, automated image 
analysis, more generalized data mashups, and prekeyed or configurable algorithms 
that provide new types of semantic lenses through which to view the text, data, and 
images. All of these features can also be federated into hub environments where 

FIGURE 1.

A screenshot of “Exemplar Semantic Enhancements” from http://imageweb.zoo.ox.ac.uk/pub/
2008/plospaper/latest, as described in [2]. Different semantic classes of terms are linked and can 
be optionally highlighted using the buttons in the top row. Hovering the mouse pointer over an 
in-text reference citation displays a box containing key supporting statements or figures from the 
cited document.

http://imageweb.zoo.ox.ac.uk/pub/2008/plospaper/latest
http://imageweb.zoo.ox.ac.uk/pub/2008/plospaper/latest
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users can annotate articles and related information, discover hidden associations, 
and share new results.

In the near term, semantic text enhancement will be performed by a combina-
tion of semi-supervised tools used by authors,3 tools used by editors, and automated 
tools applied to both new and archival publications. Many legacy authors will be 
unwilling to spend time enhancing their documents, especially if much additional 
effort is required. Certainly many publishers will provide the markup as a value-
added component of the publication process—i.e., as part of their financial model. 
The beneficial effects of this enhancement, visible to all readers, will create pres-
sure in the open sector for equally powerful tools, perhaps after only a small time 
lag as each new feature is developed. It is more natural to incorporate the semantics 
from the outset rather than trying to layer it on afterwards—and in either case, 
PDF will not provide a convenient transport format. With the correct document 
format, tools, and incentives, authors may ultimately provide much of the struc-
tural and semantic metadata during the course of article writing, with marginal 
additional effort.

In the longer term, there remains the question of where the semantic markup 
should be hosted, just as with other data published to the Web: Should publishers 
host datasets relevant to their own publications, or should there be independent  
SourceForge-like data repositories? And how should the markup be stored: as triple-
stores internal to the document or as external attachments specifying relationships 
and dependencies? As knowledge progresses, there will be new linkages, new 
things to annotate, and existing annotations that may lead to changed resources or 
data. Should it be possible to peel these back and view the document in the context 
of any previous time frame?

To avoid excessive one-off customization, the interactions between documents 
and data and the fusion of different data sources will require a generic, interopera-
ble semantic layer over the databases. Such structures will also make the data more 
accessible to generic search engines, via keyword searches and natural-language 
queries. Having the data accessible in this way should encourage more database 
maintainers to provide local semantic interfaces, thereby increasing integration 
into the global data network and amplifying the community benefits of open access 
to text and data. Tim Berners-Lee4 has actively promoted the notion of linked data 

3 For example, Pablo Fernicola’s “Article Authoring Add-in for Microsoft Office Word 2007,” 
www.microsoft.com/downloads/details.aspx?familyid=09c55527-0759-4d6d-ae02-51e90131997e.
4 www.w3.org/DesignIssues/LinkedData.html
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for all such purposes, not just by academics or for large and commonly used data-
bases. Every user makes a small contribution to the overall structure by linking an 
object to a URI, which can be dereferenced to find links to more useful data. Such 
an articulated semantic structure facilitates simpler algorithms acting on World 
Wide Web text and data and is more feasible in the near term than building a layer 
of complex artificial intelligence to interpret free-form human ideas using some 
probabilistic approach.

New forms of interaction with the data layer are also embedded in discussions 
of Wolfram|Alpha,5 a new resource (made publicly available only after this writing) 
that uses substantial personnel resources to curate many thousands of data feeds into 
a format suitable for manipulation by a Mathematica algorithmic and visualization 
engine. Supplemented by a front end that interprets semi-natural-language queries, 
this system and its likely competition will dramatically raise user expectations for 
new forms of synthesized information that is available directly via generic search en-
gines. These applications will develop that much more quickly over data repositories 
whose semantic layer is curated locally rather than requiring centralized curation.

Much of the recent progress in integrating data with text via semantic enhance-
ment, as described above, has been with application to the life sciences literature. 
In principle, text mining and natural-language processing tools that recognize  
relevant entities and automatically link to domain-specific ontologies have natural 
analogs in all fields—for example, astronomical objects and experiments in astron-
omy; mathematical terms and theorems in mathematics; physical objects, termi-
nology, and experiments in physics; and chemical structures and experiments in 
chemistry. While data-intensive science is certainly the norm in astrophysics, the 
pieces of the data network for astrophysics do not currently mesh nearly as well as 
in the life sciences. Most paradoxically, although the physics community was ahead 
in many of these digital developments going back to the early 1990s (including the 
development of the World Wide Web itself at CERN, a high-energy physics lab) and 
in providing open access to its literature, there is currently no coordinated effort 
to develop semantic structures for most areas of physics. One obstacle is that in 
many distributed fields of physics, such as condensed-matter physics, there are no 
dominant laboratories with prominent associated libraries to establish and main-
tain global resources.

5 www.wolframalpha.com, based on a private demonstration on April 23, 2009, and a public presentation on  
April 28, 2009, http://cyber.law.harvard.edu/events/2009/04/wolfram.
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In the biological and life sciences, it’s also possible that text will decrease in 
value over the next decade compared with the semantic services that direct re-
searchers to actionable data, help interpret information, and extract knowledge [3]. 
In most scientific fields, however, the result of research is more than an impartial 
set of database entries. The scientific article will retain its essential role of using 
carefully selected data to persuade readers of the truth of its author’s hypotheses. 
Database entries will serve a parallel role of providing access to complete and im-
partial datasets, both for further exploration and for automated data mining. There 
are also important differences among areas of science in the role played by data. As 
one prominent physicist-turned-biologist commented to me recently, “There are no 
fundamental organizing principles in biology”6—suggesting that some fields may 
always be intrinsically more data driven than theory driven. Science plays differ-
ent roles within our popular and political culture and hence benefits from differ-
ing levels of support. In genomics, for example, we saw the early development of  
GenBank, its adoption as a government-run resource, and the consequent growth 
of related databases within the National Library of Medicine, all heavily used.

It has also been suggested that massive data mining, and its attendant ability to 
tease out and predict trends, could ultimately replace more traditional components 
of the scientific method [4]. This viewpoint, however, confuses the goals of funda-
mental theory and phenomenological modeling. Science aims to produce far more 
than a simple mechanical prediction of correlations; instead, its goal is to employ 
those regularities extracted from data to construct a unified means of understand-
ing them a priori. Predictivity of a theory is thus primarily crucial as a validator of its 
conceptual content, although it can, of course, have great practical utility as well.

So we should neither overestimate the role of data nor underestimate that of  
text, and all scientists should track the semantic enhancement of text and related 
data-driven developments in the biological and life sciences with great interest—
and perhaps with envy. Before too long, some archetypal problem might emerge 
in the physical sciences7 that formerly required many weeks of complex query tra-
versals of databases, manually maintained browser tabs, impromptu data analysis 
scripts, and all the rest of the things we do on a daily basis. For example, a future 
researcher with seamless semantic access to a federation of databases—including 
band structure properties and calculations, nuclear magnetic resonance (NMR) 

6 Wally Gilbert, dinner on April 27, 2009. His comment may have been intended in a more limited context than 
implied here.
7 As emphasized to me by John Wilbanks in a discussion on May 1, 2009.
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and X-ray scattering measurements, and mechanical and other properties—might 
instantly find a small modification to a recently fabricated material to make it the 
most efficient photovoltaic ever conceived. Possibilities for such progress in finding 
new sources of energy or forestalling long-term climate change may already be go-
ing unnoticed in today’s unintegrated text/database world. If classes of such prob-
lems emerge and an immediate solution can be found via automated tools acting di-
rectly on a semantic layer that provides the communication channels between open 
text and databases, then other research communities will be bootstrapped into 
the future, benefiting from the new possibilities for community-driven scientific 
knowledge curation and creation embodied in the Fourth Paradigm.
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his sentence, which we used for effect in numerous con-
ference presentations and eventually fully articulated 
in a 2004 paper [1], is still by and large true. Although 
scholarly publishers have adopted new technologies that 

have made access to scholarly materials significantly easier (such 
as the Web and PDF documents), these changes have not realized 
the full potential of the new digital and networked reality. In par-
ticular, they do not address three shortcomings of the prevailing 
scholarly communication system: 

•	 Systemic	issues,	particularly	the	unbreakable	tie	in	the	publi-
cation system between the act of making a scholarly claim and 
the peer-review process

•	Economic	strains	that	are	manifested	in	the	“serials	crisis,”	
which places tremendous burdens on libraries

•	Technical	aspects	that	present	barriers	to	an	interoperable	
information infrastructure

We share these concerns about the state of scholarly commu-
nication with many others worldwide. Almost a decade ago, we  

     “The current scholarly communication system     
is nothing but a scanned copy of the paper-based system.”
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collaborated with members of that global community to begin the Open Archives 
Initiative (OAI), which had a significant impact on the direction and pace of the 
Open Access movement. The OAI Protocol for Metadata Harvesting (OAI-PMH) 
and the concurrent OpenURL effort reflected our initial focus on the process-related 
aspects of scholarly communication. Other members of the community focused on 
the scholarly content itself. For example, Peter Murray-Rust addressed the flatten-
ing of structured, machine-actionable information (such as tabular data and data 
points underlying graphs) into plain text suited only for human consumption [2]. 

A decade after our initial work in this area, we are delighted to observe the rapid 
changes that are occurring in various dimensions of scholarly communication. We 
will touch upon three areas of change that we feel are significant enough to indi-
cate a fundamental shift.

Augmenting the scholArly record with A mAchine-ActionAble substrAte 

One motivation for machine readability is the flood of literature that makes it im-
possible for researchers to keep up with relevant scholarship [3]. Agents that read 
and filter on scholars’ behalf can offer a solution to this problem. The need for such 
a mechanism is heightened by the fact that researchers increasingly need to absorb 
and process literature across disciplines, connecting the dots and combining exist-
ing disparate findings to arrive at new insights. This is a major issue in life sciences 
fields that are characterized by many interconnected disciplines (such as genetics, 
molecular biology, biochemistry, pharmaceutical chemistry, and organic chemis-
try). For example, the lack of uniformly structured data across related biomedical 
domains is cited as a significant barrier to translational research—the transfer of 
discoveries in basic biological and medical research to application in patient care 
at the clinical level [4]. 

Recently, we have witnessed a significant push toward a machine-actionable rep-
resentation of the knowledge embedded in the life sciences literature, which sup-
ports reasoning across disciplinary boundaries. Advanced text analysis techniques 
are being used to extract entities and entity relations from the existing literature, 
and shared ontologies have been introduced to achieve uniform knowledge repre-
sentation. This approach has already led to new discoveries based on information 
embedded in literature that was previously readable only by humans. Other disci-
plines have engaged in similar activities, and some initiatives are allowing scholars 
to start publishing entity and entity-relation information at the time of an article’s 
publication, to avoid the post-processing that is current practice [5].
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The launch of the international Concept Web Alliance, whose aim is to provide 
a global interdisciplinary platform to discuss, design, and potentially certify solutions 
for the interoperability and usability of massive, dispersed, and complex data, indicates 
that the trend toward a machine-actionable substrate is being taken seriously by 
both academia and the scholarly information industry. The establishment of a 
machine-actionable representation of scholarly knowledge can help scholars and 
learners deal with information abundance. It can allow for new discoveries to be 
made by reasoning over a body of established knowledge, and it can increase the 
speed of discovery by helping scholars to avoid redundant research and by revealing 
promising avenues for new research. 

integrAtion of dAtAsets into the scholArly record

Even though data have always been a crucial ingredient in scientific explorations, 
until recently they were not treated as first-class objects in scholarly communi-
cation, as were the research papers that reported on findings extracted from the 
data. This is rapidly and fundamentally changing. The scientific community is ac-
tively discussing and exploring implementation of all core functions of scholarly  
communication—registration, certification, awareness, archiving, and rewarding [1]—
for datasets. 

For example, the Data Pyramid proposed in [6] clearly indicates how attention 
to trust (certification) and digital preservation (archiving) for datasets becomes vital 
as their application reaches beyond personal use and into the realms of disciplinary 
communities and society at large. The international efforts aimed at enabling the 
sharing of research data [7] reflect recognition of the need for an infrastructure to 
facilitate discovery of shared datasets (awareness). And efforts aimed at defining 
a standard citation format for datasets [8] take for granted that they are primary 
scholarly artifacts. These efforts are motivated in part by the belief that researchers 
should gain credit (be rewarded) for the datasets they have compiled and shared. 
Less than a decade or so ago, these functions of scholarly communication largely 
applied only to the scholarly literature. 

exposure of process And its integrAtion into the scholArly record

Certain aspects of the scholarly communication process have been exposed for 
a long time. Citations made in publications indicate the use of prior knowledge 
to generate new insights. In this manner, the scholarly citation graph reveals as-
pects of scholarly dynamics and is thus actively used as a research focus to detect  
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connections between disciplines and for trend analysis and prediction. However, 
interpretation of the scholarly citation graph is often error prone due to imperfect 
manual or automatic citation extraction approaches and challenging author dis-
ambiguation issues. The coverage of citation graph data is also partial (top-ranked 
journals only or specific disciplines only), and unfortunately the most representa-
tive graph (Thomson Reuters) is proprietary. 

The citation graph problem is indicative of a broader problem: there is no unam-
biguous, recorded, and visible trace of the evolution of a scholarly asset through the 
system, nor is there information about the nature of the evolution. The problem is 
that relationships, which are known at the moment a scholarly asset goes through a 
step in a value chain, are lost the moment immediately after, in many cases forever. 
The actual dynamics of scholarship—the interaction/connection between assets, 
authors, readers, quality assessments about assets, scholarly research areas, and so 
on—are extremely hard to recover after the fact. Therefore, it is necessary to estab-
lish a layer underlying scholarly communication—a grid for scholarly communica-
tion that records and exposes such dynamics, relationships, and interactions.

A solution to this problem is emerging through a number of innovative initiatives 
that make it possible to publish information about the scholarly process in machine- 
readable form to the Web, preferably at the moment that events of the above- 
described type happen and hence, when all required information is available. 

Specific to the citation graph case, the Web-oriented citation approach explored 
by the CLADDIER project demonstrates a mechanism for encoding an accurate, 
crawlable citation graph on the Web. Several initiatives are aimed at introducing 
author identifiers [9] that could help establish a less ambiguous citation graph. A 
graph augmented with citation semantics, such as that proposed by the Citation 
Typing Ontology effort, would also reveal why an artifact is being cited—an impor-
tant bit of information that has remained elusive until now [10].

Moving beyond citation data, other efforts to expose the scholarly process in-
clude projects that aim to share scholarly usage data (the process of paying atten-
tion to scholarly information), such as COUNTER, MESUR, and the bX scholarly 
recommender service. Collectively, these projects illustrate the broad applicability 
of this type of process-related information for the purpose of collection develop-
ment, computation of novel metrics to assess the impact of scholarly artifacts [11], 
analysis of current research trends [12], and recommender systems. As a result of 
this work, several projects in Europe are pursuing technical solutions for sharing 
detailed usage data on the Web. 
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Another example of process capture is the successful myExperiment effort, 
which provides a social portal for sharing computational workflow descriptions. 
Similar efforts in the chemistry community allow the publication and sharing of 
laboratory notebook information on the Web [13]. 

We find these efforts particularly inspiring because they allow us to imagine 
a next logical step, which would be the sharing of provenance data. Provenance 
data reveal the history of inputs and processing steps involved in the execution 
of workflows and are a critical aspect of scientific information, both to establish 
trust in the veracity of the data and to support the reproducibility demanded of all 
experimental science. Recent work in the computer science community [14] has 
yielded systems capable of maintaining detailed provenance information within 
a single environment. We feel that provenance information that describes and in-
terlinks workflows, datasets, and processes is a new kind of process-type meta-
data that has a key role in network-based and data-intensive science—similar in 
importance to descriptive metadata, citation data, and usage data in article-based 
scholarship. Hence, it seems logical that eventually provenance information will 
be exposed so it can be leveraged by a variety of tools for discovery, analysis, and 
impact assessment of some core products of new scholarship: workflows, datasets, 
and processes.

looking forwArd

As described above, the scholarly record will emerge as the result of the inter-
twining of traditional and new scholarly artifacts, the development of a machine- 
actionable scholarly knowledge substrate, and the exposure of meta-information 
about the scholarly process. These facilities will achieve their full potential only  
if they are grounded in an appropriate and interoperable cyberinfrastructure that  
is based on the Web and its associated standards. The Web will not only contribute 
to the sustainability of the scholarly process, but it will also integrate scholarly  
debate seamlessly with the broader human debate that takes place on the Web. 

We have recently seen an increased Web orientation in the development of  
approaches to scholarly interoperability. This includes the exploration or active use 
of uniform resource identifiers (URIs), more specifically HTTP URIs, for the iden-
tification of scholarly artifacts, concepts, researchers, and institutions, as well as 
the use of the XML, RDF, RDFS, OWL, RSS, and Atom formats to support the 
representation and communication of scholarly information and knowledge. These 
foundational technologies are increasingly being augmented with community-
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specific and community-driven yet compliant specializations. Overall, a picture is 
beginning to emerge in which all constituents of the new scholarly record (both 
human and machine-readable) are published on the Web, in a manner that com-
plies with general Web standards and community-specific specializations of those 
standards. Once published on the Web, they can be accessed, gathered, and mined 
by both human and machine agents. 

Our own work on the OAI Object Reuse & Exchange (OAI-ORE) specifications 
[15], which define an approach to identifying and describing eScience assets that 
are aggregations of multiple resources, is an illustration of this emerging Web-
centric cyberinfrastructure approach. It builds on core Web technologies and also 
adheres to the guidelines of the Linked Data effort, which is rapidly emerging as the 
most widespread manifestation of years of Semantic Web work. 

When describing this trend toward the use of common Web approaches for 
scholarly purposes, we are reminded of Jim Gray, who insisted throughout the 
preliminary discussions leading to the OAI-ORE work that any solution should  
leverage common feed technologies—RSS or Atom. Jim was right in indicating that 
many special-purpose components of the cyberinfrastructure need to be developed 
to meet the requirements of scholarly communication, and in recognizing that  
others are readily available as a result of general Web standardization activities.

As we look into the short-term future, we are reminded of one of Jim Gray’s 
well-known quotes: “May all your problems be technical.” With this ironic com-
ment, Jim was indicating that behind even the most difficult technical problems 
lies an even more fundamental problem: assuring the integration of the cyberin-
frastructure into human workflows and practices. Without such integration, even 
the best cyberinfrastructure will fail to gain widespread use. Fortunately, there 
are indications that we have learned this lesson from experience through the years  
with other large-scale infrastructure projects such as the Digital Libraries Initia-
tives. The Sustainable Digital Data Preservation and Access Network Partners  
(DataNet) program funded by the Office of Cyberinfrastructure at the U.S. National  
Science Foundation (NSF) has recently awarded funding for two 10-year projects  
that focus on cyberinfrastructure as a sociotechnical problem—one that requires 
both knowledge of technology and understanding of how the technology integrates 
into the communities of use. We believe that this wider focus will be one of the 
most important factors in changing the nature of scholarship and the ways that it is  
communicated over the coming decade.

We are confident that the combination of the continued evolution of the 
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Web, new technologies that leverage its core principles, and an understanding of 
the way people use technology will serve as the foundation of a fundamentally  
rethought scholarly communication system that will be friendly to both humans and  
machines. With the emergence of that system, we will happily refrain from using 
our once-beloved scanned copy metaphor.
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The Future of Data Policy

dvances in information and communication technol-
ogies have brought about an information revolution, 
leading to fundamental changes in the way that infor-
mation is collected or generated, shared, and distrib-

uted [1, 2]. The importance of establishing systems in which re-
search findings can be readily made available to and used by other 
researchers has long been recognized in international scientific 
collaborations. Acknowledgment of the need for data access and 
sharing is most evident in the framework documents underpin-
ning many of the large-scale observational projects that generate 
vast amounts of data about the Earth, water, the marine environ-
ment, and the atmosphere. 

For more than 50 years, the foundational documents of major 
collaborative scientific projects have typically included as a key 
principle a commitment to ensuring that research outputs will 
be openly and freely available. While these agreements are often 
entered into at the international level (whether between govern-
ments or their representatives in international organizations), in-
dividual researchers and research projects typically operate locally, 
within a national jurisdiction. If the data access principles adopted 
by international scientific collaborations are to be effectively im-
plemented, they must be supported by the national policies and 
laws in place in the countries in which participating researchers 
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are operating. Failure to establish a bridge between, on the one hand, data access 
principles enunciated at the international level and, on the other hand, the policies 
and laws at the national level means that the benefits flowing from data sharing are 
at risk of being thwarted by domestic objectives [3]. 

The need for coherence among data sharing principles adopted by inter- 
national science collaborations and the policy and legal frameworks in place in  
the national jurisdictions where researchers operate is highlighted by the Global 
Earth Observation System of Systems1 (GEOSS) initiated in 2005 by the Group  
on Earth Observations (GEO) [1, p. 125]. GEOSS seeks to connect the producers of 
environmental data and decision-support tools with the end users of these products, 
with the aim of enhancing the relevance of Earth observations to global issues. The 
end result will be a global public infrastructure that generates comprehensive, near-
real-time environmental data, information, and analyses for a wide range of users. 

The vision for GEOSS is as a “system of systems,” built on existing observa-
tional systems and incorporating new systems for Earth observation and model-
ing that are offered as GEOSS components. This emerging public infrastructure 
links a diverse and growing array of instruments and systems for monitoring and 
forecasting changes in the global environment. This system of systems supports 
policymakers, resource managers, science researchers, and many other experts 
and decision makers.

internAtionAl policies

One of GEO’s earliest actions was to explicitly acknowledge the importance of data 
sharing in achieving its vision and to agree on a strategic set of data sharing prin-
ciples for GEOSS [4]: 

•	There	will	be	full	and	open	exchange	of	data,	metadata	and	products	shared	
within GEOSS, recognizing relevant international instruments, and national 
policies and legislation.

•	All	shared	data,	metadata,	and	products	will	be	made	available	with	minimum	
time delay and at minimum cost.

•	All	shared	data,	metadata,	and	products	free	of	charge	or	no	more	than	cost	of	
reproduction will be encouraged for research and education.

1 www.earthobservations.org/index.html
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These principles, though significant, are not strictly new. A number of other 
international policy statements promote public availability and open exchange of 
data, including the Bermuda Principles (1996) and the Berlin Declaration on Open 
Access to Knowledge in the Sciences and Humanities (2003) [5]. 

The Bermuda Principles were developed by scientists involved in the Interna-
tional Human Genome Sequencing Consortium and their funding agencies and 
represented an agreement among researchers about the need to establish a basis 
for the rapid and open sharing of prepublication data on gene sequences [6]. The 
Bermuda Principles required automatic release of sequence assemblies larger than 
1 KB and immediate publication of finished annotated sequences. They sought to 
make the entire gene sequence freely available to the public for research and devel-
opment in order to maximize benefits to society. 

The Berlin Declaration had the goal of supporting the open access paradigm 
via the Internet and promoting the Internet as a fundamental instrument for a 
global scientific knowledge base. It defined “open access contribution” to include 
scientific research results, raw data, and metadata, and it required open access con-
tributions to be deposited in an online repository and made available under a “free, 
irrevocable, worldwide, right of access to, and a license to copy, use, distribute, 
transmit and display the work publicly and to make and distribute derivative works, 
in any digital medium for any responsible purpose, subject to proper attribution of 
authorship.” [7] 

In fact, the GEOSS principles map closely to the data sharing principles espoused 
in the Antarctic Treaty, signed almost 50 years earlier in Washington, D.C., in 1959, 
which has received sustained attention in Australia, particularly in relation to ma-
rine data research.2 Article III of the Antarctic Treaty states: 

1. In order to promote international cooperation in scientific investigation in  
Antarctica, as provided for in Article II of the present Treaty, the Contract-
ing Parties agree that, to the greatest extent feasible and practicable: … 
(c) scientific observations and results from Antarctica shall be exchanged and 
made freely available. [8]

The data sharing principles stated in the Antarctic Treaty, the GEOSS 10-Year 
Implementation Plan, the Bermuda Principles, and the Berlin Declaration, among 

2 Other international treaties with such provisions include the UN Convention on the Law of the Sea, the Ozone 
Protocol, the Convention on Biodiversity, and the Aarhus Convention.
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others, are widely acknowledged to be not only beneficial but crucial to information 
flows and the availability of data. However, problems arise because, in the absence 
of a clear policy and legislative framework at the national level, other considerations 
can operate to frustrate the effective implementation of the data sharing objectives 
that are central to international science collaborations [5, 9]. Experience has shown 
that without an unambiguous statement of data access policy and a supporting leg-
islative framework, good intentions are too easily frustrated in practice. 

nAtionAl frAmeworks

The key strategy in ensuring that international policies requiring “full and open 
exchange of data” are effectively acted on in practice lies in the development of a 
coherent policy and legal framework at a national level. (See Figure 1.) The national 
framework must support the international principles for data access and sharing 
but also be clear and practical enough for researchers to follow at a research proj-
ect level. While national frameworks for data sharing are well established in the 
United States and Europe, this is not the case in many other jurisdictions (includ-
ing Australia). Kim Finney of the Antarctic Data Centre has drawn attention to 
the difficulties in implementing Article III(1)(c) of the Antarctic Treaty in the ab-

sence of established data access policies 
in signatories to the treaty. She points 
out that being able to achieve the goal 
set out in the treaty requires a genuine 
willingness on the part of scientists to 
make their data available to other re-
searchers. This willingness is lacking, 
despite the treaty’s clear intention that 
Antarctic science data be “exchanged 
and made freely available.” Finney ar-
gues that there is a strong need for a 
data access policy in Antarctic member 
states, because without such a policy, 
the level of conformance with the aspi-
rations set out in the Antarctic Treaty is 
patchy at best [10] [1, pp. 77–78].

In the U.S., the Office of Manage-
ment and Budget (OMB) Circular A-130 

International 
Policies

e.g., GEOSS data- 
sharing principles, 
Antarctic Treaty, 

Bermuda Principles 

International 
Legal 

Instruments
e.g., OECD 

Recommendations

National 
Frameworks

Data 
Management 
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FIGURE 1.

A regulatory framework for data-sharing  
arrangements.
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establishes the data access and reuse policy framework for the executive branch de-
partments and agencies of the U.S. federal government [11] [1, pp. 174–175]. As well 
as acknowledging that government information is a valuable public resource and 
that the nation stands to benefit from the dissemination of government informa-
tion, OMB Circular A-130 requires that improperly restrictive practices be avoided. 
Additionally, Circular A-16, entitled “Coordination of Geographic Information and 
Related Spatial Data Activities,” provides that U.S. federal agencies have a respon-
sibility to “[c]ollect, maintain, disseminate, and preserve spatial information such 
that the resulting data, information, or products can be readily shared with other 
federal agencies and non-federal users, and promote data integration between all 
sources.” [12] [1, pp. 181–183] 

In Europe, the policy framework consists of the broad-reaching Directive on the 
Re-use of Public Sector Information (2003) (the PSI Directive) [13], as well as the 
specific directive establishing an Infrastructure for Spatial Information (2007) (the 
INSPIRE Directive) [14] and the Directive on Public Access to Environmental In-
formation (2003) [15], which obliges public authorities to provide timely access to 
environmental information. 

In negotiating the PSI Directive, the European Parliament and Council of the 
European Union recognized that the public sector is the largest producer of infor-
mation in Europe and that substantial social and economic benefits stood to be 
gained if this information were available for access and reuse. However, European 
content firms engaging in the aggregation of information resources into value- 
added information products would be at a competitive disadvantage if they did not 
have clear policies or uniform practices to guide them in relation to access to and 
reuse of public sector information. The lack of harmonization of policies and prac-
tices regarding public sector information was seen as a barrier to the development 
of digital products and services based on information obtained from different coun-
tries [1, pp. 137–138]. In response, the PSI Directive establishes a framework of 
rules governing the reuse of existing documents held by the public sector bodies of 
EU member states. Furthermore, the INSPIRE Directive establishes EU policy and 
principles relating to spatial data held by or on behalf of public authorities and to the 
use of spatial data by public authorities in the performance of their public tasks.

Unlike the U.S. and Europe, however, Australia does not currently have a na-
tional policy framework addressing access to and use of data. In particular, the 
current situation with respect to public sector information (PSI) access and reuse 
is fragmented and lacks a coherent policy foundation, whether viewed in terms of 
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interactions within or among the different levels of government at the local, state/
territory, and federal levels or between the government, academic, and private  
sectors.3 In 2008, the “Venturous Australia” report of the Review of the National 
Innovation System recommended (in Recommendation 7.7) that Australia estab-
lish a National Information Strategy to optimize the flow of information in the 
Australian economy [16]. However, just how a National Information Strategy could 
be established remains unclear. 

A starting point for countries like Australia that have yet to establish national 
frameworks for the sharing of research outputs has been provided by the Organisa-
tion for Economic Co-operation and Development (OECD). At the Seoul Ministe-
rial Meeting on the Future of the Internet Economy in 2008, the OECD Ministers 
endorsed statements of principle on access to research data produced as a result of 
public funding and on access to public sector information. These documents es-
tablish principles to guide availability of research data, including openness, trans-
parency, legal conformity, interoperability, quality, efficiency, accountability, and 
sustainability, similar to the principles expressed in the GEOSS statement. The 
openness principle in the OECD Council’s Recommendation on Access to Research 
Data from Public Funding (2006) states:

A) Openness 
Openness means access on equal terms for the international research com- 
munity at the lowest possible cost, preferably at no more than the marginal 
cost of dissemination. Open access to research data from public funding 
should be easy, timely, user-friendly and preferably Internet-based. [17]

OECD Recommendations are OECD legal instruments that describe standards 
or objectives that OECD member countries (such as Australia) are expected to im-
plement, although they are not legally binding. However, through long-standing 
practice of member countries, a Recommendation is considered to have great moral 
force [2, p. 11]. In Australia, the Prime Minister’s Science, Engineering and Innova-
tion Council (PMSEIC) Data for Science Working Group, in its 2006 report “From 
Data to Wisdom: Pathways to Successful Data Management for Australian Science,” 
recommended that OECD guidelines be taken into account in the development of a 
strategic framework for management of research data in Australia [18].

The development of a national framework for data management based on  

3 There has been little policy advancement in Australia on the matter of access to government information since 
the Office of Spatial Data Management’s Policy on Spatial Data Access and Pricing in 2001.
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principles promoting data access and sharing (such as the OECD Recommendation) 
would help to incorporate international policy statements and protocols such as the 
Antarctic Treaty and the GEOSS Principles into domestic law. This would provide 
stronger guidance (if not a requirement) for researchers to consider and, where 
practicable, incorporate these data sharing principles into their research project 
data management plans [5, 9]. 

conclusion

Establishing data sharing arrangements for complex, international eResearch col-
laborations requires appropriate national policy and legal frameworks and data 
management practices. While international science collaborations typically ex-
press a commitment to data access and sharing, in the absence of a supporting 
national policy and legal framework and good data management practices, such 
objectives are at risk of not being implemented. Many complications are inherent 
in eResearch science collaborations, particularly where they involve researchers 
operating in distributed locations. Technology has rendered physical boundaries 
irrelevant, but legal jurisdictional boundaries remain. If research data is to flow 
as intended, it will be necessary to ensure that national policies and laws support 
the data access systems that have long been regarded as central to international 
science collaborations. In developing policies, laws, and practices at the national 
level, guidance can be found in the OECD’s statements on access to publicly funded 
research data, the U.S. OMB’s Circular A-130, and various EU directives.

It is crucial that countries take responsibility for promoting policy goals for ac-
cess and reuse of data at all three levels in order to facilitate information flows. It 
is only by having the proper frameworks in place that we can be sure to keep afloat 
in the data deluge. 
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tend to get nervous when i hear talk of paradigm shifts. 
The term itself has been debased through inaccurate popular 
use—even turning into a joke on The Simpsons—but its origi-
nal role in Thomas Kuhn’s Structure of Scientific Revolutions [1] 

is worth revisiting as we examine the idea of a Fourth Paradigm 
and its impact on scholarly communication [2].

Kuhn’s model describes a world of science in which a set of ideas 
becomes dominant and entrenched, creating a worldview (the in-
famous “paradigm”) that itself gains strength and power. This set 
of ideas becomes powerful because it represents a plausible ex-
planation for observed phenomena. Thus we get the luminiferous 
aether, the miasma theory of infectious disease, and the idea that 
the sun revolves around the Earth. The set of ideas, the worldview, 
the paradigm, gains strength through incrementalism. Each indi-
vidual scientist tends to work in a manner that adds, bit by bit, to 
the paradigm. The individual who can make a big addition to the 
worldview gains authority, research contracts, awards and prizes, 
and seats on boards of directors. 

All involved gain an investment in the set of ideas that goes 
beyond the ideas themselves. Industries and governments (and 
the people who work in them) build businesses and policies that 
depend on the worldview. This adds a layer of defense—an im-
mune system of sorts—that protects the worldview against attack. 

I Have Seen the  
Paradigm Shift, and It Is Us
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Naysayers are marginalized. New ideas lie fallow, unfunded, and unstaffed. Fear, 
uncertainty, and doubt color perceptions of new ideas, methods, models, and ap-
proaches that challenge the established paradigm. 

Yet worldviews fall and paradigms shatter when they stop explaining the ob-
served phenomena or when an experiment conclusively proves the paradigm wrong. 
The aether was conclusively disproven after hundreds of years of incrementalism. 
As was miasma, as was geocentricism. The time for a shift comes when the old 
ways of explaining things simply can no longer match the new realities.

This strikes me as being the idea behind Jim Gray’s argument about the fourth 
data paradigm [3] and the framing of the “data deluge”—that our capacity to mea-
sure, store, analyze, and visualize data is the new reality to which science must 
adapt. Data is at the heart of this new paradigm, and it sits alongside empiricism, 
theory, and simulation, which together form the continuum we think of as the 
modern scientific method. 

But I come to celebrate the first three paradigms, not to bury them. Empiricism 
and theory got us a long way, from a view of the world that had the sun revolving 
around the Earth to quantum physics. Simulation is at the core of so much con-
temporary science, from anthropological re-creations of ancient Rome to weather 
prediction. The accuracy of simulations and predictions represents the white-hot 
center of policy debates about economics and climate change. And it’s vital to note 
that empiricism and theory are essential to a good simulation. I can encode a lovely 
simulation on my screen in which there is no theory of gravity, but if I attempt to 
drive my car off a cliff, empiricism is going to bite my backside on the way down. 

Thus, this is actually not a paradigm shift in the Kuhnian sense. Data is not 
sweeping away the old reality. Data is simply placing a set of burdens on the meth-
odologies and social habits we use to deal with and communicate our empiricism 
and our theory, on the robustness and complexity of our simulations, and on the 
way we expose, transmit, and integrate our knowledge. 

What needs to change is our paradigm of ourselves as scientists—not the old 
paradigms of discovery. When we started to realize that stuff was made of atoms, 
that we were made of genes, that the Earth revolved around the sun, those were 
paradigm shifts in the Kuhnian sense. What we’re talking about here cuts across 
those classes of shift. Data-intensive science, if done right, will mean more para-
digm shifts of scientific theory, happening faster, because we can rapidly assess our 
worldview against the “objective reality” we can so powerfully measure. 

The data deluge strategy might be better informed by networks than by Kuhnian 
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dynamics. Networks have a capacity to scale that is useful in our management of 
the data overload—they can convert massive amounts of information into a good 
thing so the information is no longer a “problem” that must be “solved.” And there 
is a lesson in the way networks are designed that can help us in exploring the data 
deluge: if we are to manage the data deluge, we need an open strategy that follows 
the network experience.

By this I mean the “end-to-end,” layer-by-layer, designed information technol-
ogy and communications networks that are composed of no more than a stack of 
protocols. The Internet and the Web have been built from documents that propose 
standard methods for transferring information, describing how to display that in-
formation, and assigning names to computers and documents. Because we all agree 
to use those methods, because those methods can be used by anyone without ask-
ing for permission, the network emerges and scales.

In this view, data is not a “fourth paradigm” but a “fourth network layer” (atop 
Ethernet, TCP/IP, and the Web [4]) that interoperates, top to bottom, with the other 
layers. I believe this view captures the nature of the scientific method a little better 
than the concept of the paradigm shift, with its destructive nature. Data is the re-
sult of incremental advances in empiricism-serving technology. It informs theory, 
it drives and validates simulations, and it is served best by two-way, standard com-
munication with those layers of the knowledge network.

To state it baldly, the paradigm that needs destruction is the idea that we as 
scientists exist as un-networked individuals. Now, if this metaphor is acceptable, it 
holds two lessons for us as we contemplate network design for scholarly communi-
cation at the data-intensive layer.

The first lesson, captured perfectly by David Isenberg, is that the Internet  
“derives its disruptive quality from a very special property: IT IS PUBLIC.” [5] It’s 
public in several ways. The standard specifications that define the Internet are 
themselves open and public—free to read, download, copy, and make derivatives 
from. They’re open in a copyright sense. Those specifications can be adopted by 
anyone who wants to make improvements and extensions, but their value comes 
from the fact that a lot of people use them, not because of private improvements. 
As Isenberg notes, this allows a set of “miracles” to emerge: the network grows  
without a master, lets us innovate without asking for permission, and grows and 
discovers markets (think e-mail, instant messaging, social networks, and even por-
nography). Changing the public nature of the Internet threatens its very existence. 
This is not intuitive to those of us raised in a world of rivalrous economic goods and 
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traditional economic theory. It makes no sense that Wikipedia exists, let alone that 
it kicks Encyclopedia Britannica to the curb.

As Galileo might have said, however, “And yet it moves.” [6] Wikipedia does ex-
ist, and the network—a consensual hallucination defined by a set of dry requests 
for comments—carries Skype video calls for free between me and my family in 
Brazil. It is an engine for innovation the likes of which we have never seen. And 
from the network, we can draw the lesson that new layers of the network related 
to data should encode the idea of publicness—of standards that allow us to work 
together openly and transfer the network effects we know so well from the giant 
collection of documents that is the Web to the giant collections of data we can so 
easily compile.

The second lesson comes from another open world, that of open source soft-
ware. Software built on the model of distributed, small contributions joined to-
gether through technical and legal standardization was another theoretical impos-
sibility subjected to a true Kuhnian paradigm shift by the reality of the Internet. 
The ubiquitous ability to communicate, combined with the low cost of acquiring 
programming tools and the visionary application of public copyright licenses, had 
the strangest impact: it created software that worked, and scaled. The key lesson 
is that we can harness the power of millions of minds if we standardize, and the 
products can in many cases outperform those built in traditional, centralized en-
vironments. (A good example is the Apache Web server, which has been the most 
popular Web server software on the Internet since 1996.)

Creative Commons applied these lessons to licensing and created a set of standard 
licenses for cultural works. These have in turn exploded to cover hundreds of mil-
lions of digital objects on the network. Open licensing turns out to have remarkable 
benefits—it allows for the kind of interoperability (and near-zero transaction costs) 
that we know from technical networks to occur on a massive scale for rights associ-
ated with digital objects such as songs and photographs—and scientific information.

Incentives are the confounding part of all of this to traditional economic theory. 
Again, this is a place where a Kuhnian paradigm shift is indeed happening—the 
old theory could not contemplate a world in which people did work for free, but the 
new reality proves that it happens. Eben Moglen provocatively wrote in 1999 that 
collaboration on the Internet is akin to electrical induction—an emergent property 
of the network unrelated to the incentives of any individual contributor. We should 
not ask why there is an incentive for collaborative software development any more 
than we ask why electrons move in a current across a wire. We should instead ask, 
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what is the resistance in the wire, or in the network, to the emergent property? 
Moglen’s Metaphorical Corollaries to Faraday’s Law and Ohm’s Law1 still resonate 
10 years on. 

There is a lot of resistance in the network to a data-intensive layer. And it’s actu-
ally not based nearly as much on intellectual property issues as it was on software 
(although the field strength of copyright in resisting the transformation of peer-
reviewed literature is very strong and is actively preventing the “Web revolution” in 
that realm of scholarly communication). With data, problems are caused by copy-
right,2 but resistance also comes from many other sources: it’s hard to annotate 
and reuse data, it’s hard to send massive data files around, it’s hard to combine 
data that was not generated for recombination, and on and on. Thus, to those who 
didn’t generate it, data has a very short half-life. This resistance originates with the 
paradigm of ourselves as individual scientists, not the paradigms of empiricism, 
theory, or simulation.

I therefore propose that our focus be Moglen-inspired and that we resist the re-
sistance. We need investment in annotation and curation, in capacity to store and 
render data, and in shared visualization and analytics. We need open standards for 
sharing and exposing data. We need the RFCs (Requests for Comments) of the data 
layer. And, above all, we need to teach scientists and scholars to work in this new 
layer of data. As long as we practice a micro-specialization guild culture of training, 
the social structure of science will continue to provide significant resistance to the 
data layer. 

We need to think of ourselves as connected nodes that need to pass data, test 
theories, access each others’ simulations. And given that every graph about data 
collection capacity is screaming up exponentially, we need scale in our capacity to 
use that data, and we need it badly. We need to network ourselves and our knowl-
edge. Nothing else we have designed to date as humans has proven to scale as fast 
as an open network.

Like all metaphors, the network one has its limits. Networking knowledge is 
harder than networking documents. Emergent collaboration in software is easier 

1 “Moglen’s Metaphorical Corollary to Faraday’s Law says that if you wrap the Internet around every person on the 
planet and spin the planet, software flows in the network. It’s an emergent property of connected human minds 
that they create things for one another’s pleasure and to conquer their uneasy sense of being too alone. The only 
question to ask is, what’s the resistance of the network? Moglen’s Metaphorical Corollary to Ohm’s Law states that 
the resistance of the network is directly proportional to the field strength of the ‘intellectual property’ system.” [7]
2 Data receives wildly different copyright treatment across the world, which causes confusion and makes interna-
tional licensing schemes complex and difficult. [8] 
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because the tools are cheap and ubiquitous—that’s not the case in high-throughput 
physics or molecular biology. Some of the things that make the Web great don’t 
work so well for science and scholarship because the concept of agreement-based 
ratings find you only the stuff that represents a boring consensus and not the inter-
esting stuff along the edges.

But there is precious little in terms of alternatives to the network approach. The 
data deluge is real, and it’s not slowing down. We can measure more, faster, than 
ever before. We can do so in massively parallel fashion. And our brain capacity is 
pretty well frozen at one brain per person. We have to work together if we’re go-
ing to keep up, and networks are the best collaborative tool we’ve ever built as a 
culture. And that means we need to make our data approach just as open as the 
protocols that connect computers and documents. It’s the only way we can get the 
level of scale that we need.

There is another nice benefit to this open approach. We have our worldviews and 
paradigms, our opinions and our arguments. It’s our nature to think we’re right. 
But we might be wrong, and we are most definitely not completely right. Encoding 
our current worldviews in an open system would mean that those who come along 
later can build on top of us, just as we build on empiricism and theory and simu-
lation, whereas encoding ourselves in a closed system would mean that what we 
build will have to be destroyed to be improved. An open data layer to the network 
would be a fine gift to the scientists who follow us into the next paradigm—a grace 
note of good design that will be remembered as a building block for the next evolu-
tion of the scientific method.
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ne of the most articulate of web commentators, 
Clay Shirky, put it best. During his “Lessons from 
Napster” talk at the O’Reilly Peer-to-Peer Confer-
ence in 2001, he invited his audience to consider the 

infamous prediction of IBM’s creator, Thomas Watson, that the 
world market for computers would plateau at somewhere around 
five [1]. No doubt some of the people listening that day were them-
selves carrying more than that number of computers on their laps 
or their wrists and in their pockets or their bags. And that was 
even before considering all the other computers about them in the 
room—inside the projector, the sound system, the air condition-
ers, and so on. But only when the giggling subsided did he land 
his killer blow. “We now know that that number was wrong,” said 
Shirky. “He overestimated by four.” Cue waves of hilarity from the 
assembled throng.

Shirky’s point, of course, was that the defining characteristic 
of the Web age is not so much the ubiquity of computing devices 
(transformational though that is) but rather their interconnected-
ness. We are rapidly reaching a time when any device not con-
nected to the Internet will hardly seem like a computer at all. The 
network, as they say, is the computer.

This fact—together with the related observation that the domi-
nant computing platform of our time is not Unix or Windows or 

From Web 2.0 to the  
Global Database
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Mac OS, but rather the Web itself—led Tim O’Reilly to develop a vision for what he 
once called an “Internet operating system” [2], which subsequently evolved into a 
meme now known around the world as “Web 2.0” [3].

Wrapped in that pithy (and now, unfortunately, overexploited) phrase are two 
important concepts. First, Web 2.0 acted as a reminder that, despite the dot-com 
crash of 2001, the Web was—and still is—changing the world in profound ways. 
Second, it incorporated a series of best-practice themes (or “design patterns and 
business models”) for maximizing and capturing this potential. These themes  
included:

•	Network	effects	and	“architectures	of	participation”

•	The	Long	Tail

•	 Software	as	a	service

•	Peer-to-peer	technologies

•	Trust	systems	and	emergent	data

•	Open	APIs	and	mashups

•	AJAX

•	Tagging	and	folksonomies

•	 “Data	as	the	new	‘Intel	Inside’”

The first of these has widely become seen as the most significant. The Web is 
more powerful than the platforms that preceded it because it is an open network 
and lends itself particularly well to applications that enable collaboration. As a re-
sult, the most successful Web applications use the network on which they are built 
to produce their own network effects, sometimes creating apparently unstoppable 
momentum. This is how a whole new economy can arise in the form of eBay. And 
how tiny craigslist and Wikipedia can take on the might of mainstream media and 
reference publishing, and how Google can produce excellent search results by sur-
reptitiously recruiting every creator of a Web link to its cause.

If the Web 2.0 vision emphasizes the global, collaborative nature of this new 
medium, how is it being put to use in perhaps the most global and collaborative of 
all human endeavors, scientific research? Perhaps ironically, especially given the 
origins of the Web at CERN [4], scientists have been relatively slow to embrace 
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approaches that fully exploit the Web, at least in their professional lives. Blogging, 
for example, has not taken off in the same way that it has among technologists, 
political pundits, economists, or even mathematicians. Furthermore, collaborative 
environments such as OpenWetWare1 and Nature Network2 have yet to achieve 
anything like mainstream status among researchers. Physicists long ago learned to 
share their findings with one another using the arXiv preprint server,3 but only be-
cause it replicated habits that they had previously pursued by post and then e-mail. 
Life and Earth scientists, in contrast, have been slower to adopt similar services, 
such as Nature Precedings.4

This is because the barriers to full-scale adoption are not only (or even mainly) 
technical, but also psychological and social. Old habits die hard, and incentive  
systems originally created to encourage information sharing through scientific 
journals can now have the perverse effect of discouraging similar activities by other 
routes.

Yet even if these new approaches are growing more slowly than some of us would 
wish, they are still growing. And though the timing of change is difficult to predict, 
the long-term trends in scientific research are unmistakable: greater specializa-
tion, more immediate and open information sharing, a reduction in the size of 
the “minimum publishable unit,” productivity measures that look beyond journal 
publication records, a blurring of the boundaries between journals and databases, 
and reinventions of the roles of publishers and editors. Most important of all—and 
arising from this gradual but inevitable embrace of information technology—we 
will see an increase in the rate at which new discoveries are made and put to use. 
Laboratories of the future will indeed hum to the tune of a genuinely new kind of 
computationally driven, interconnected, Web-enabled science.

Look, for example, at chemistry. That granddaddy of all collaborative sites,  
Wikipedia,5 now contains a great deal of high-quality scientific information, much 
of it provided by scientists themselves. This includes rich, well-organized, and  
interlinked information about many thousands of chemical compounds. Mean-
while, more specialized resources from both public and private initiatives—notably 
PubChem6 and ChemSpider7—are growing in content, contributions, and usage 

1  http://openwetware.org
2  http://network.nature.com
3  www.arxiv.org
4  http://precedings.nature.com
5  http://wikipedia.org
6  http://pubchem.ncbi.nlm.nih.gov
7  www.chemspider.com
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despite the fact that chemistry has historically been a rather proprietary domain. 
(Or perhaps in part because of it, but that is a different essay.)

And speaking of proprietary domains, consider drug discovery. InnoCentive,8 
a company spun off from Eli Lilly, has blazed a trail with a model of open, Web-
enabled innovation that involves organizations reaching outside their walls to solve 
research-related challenges. Several other pharmaceutical companies that I have 
spoken with in recent months have also begun to embrace similar approaches, not 
principally as acts of goodwill but in order to further their corporate aims, both 
scientific and commercial.

In industry and academia alike, one of the most important forces driving the 
adoption of technologically enabled collaboration is sheer necessity. Gone are the 
days when a lone researcher could make a meaningful contribution to, say, mo-
lecular biology without access to the data, skills, or analyses of others. As a result, 
over the last couple of decades many fields of research, especially in biology, have 
evolved from a “cottage industry” model (one small research team in a single loca-
tion doing everything from collecting the data to writing the paper) into a more 
“industrial” one (large, distributed teams of specialists collaborating across time 
and space toward a common end).

In the process, they are gathering vast quantities of data, with each stage in 
the progression being accompanied by volume increases that are not linear but 
exponential. The sequencing of genes, for example, has long since given way to 
whole genomes, and now to entire species [5] and ecosystems [6]. Similarly, one- 
dimensional protein-sequence data has given way to three-dimensional protein 
structures, and more recently to high-dimensional protein interaction datasets.

This brings changes that are not just quantitative but also qualitative. Chris  
Anderson has been criticized for his Wired article claiming that the accumulation 
and analysis of such vast quantities of data spells the end of science as we know 
it [7], but he is surely correct in his milder (but still very significant) claim that 
there comes a point in this process when “more is different.” Just as an information  
retrieval algorithm like Google’s PageRank [8] required the Web to reach a certain 
scale before it could function at all, so new approaches to scientific discovery will 
be enabled by the sheer scale of the datasets we are accumulating.

But realizing this value will not be easy. Everyone concerned, not least research-
ers and publishers, will need to work hard to make the data more useful. This will 

8  www.innocentive.com
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involve a range of approaches, from the relatively formal, such as well-defined 
standard data formats and globally agreed identifiers and ontologies, to looser 
ones, like free-text tags [9] and HTML microformats [10]. These, alongside au-
tomated approaches such as text mining [11], will help to give each piece of in-
formation context with respect to all the others. It will also enable two hitherto 
largely separate domains—the textual, semi-structured world of journals and the 
numeric, highly structured world of databases—to come together into one inte-
grated whole. As the information held in journals becomes more structured, as 
that held in many databases becomes more curated, and as these two domains 
establish richer mutual links, the distinction between them might one day become 
so fuzzy as to be meaningless.

Improved data structures and richer annotations will be achieved in large part 
by starting at the source: the laboratory. In certain projects and fields, we already 
see reagents, experiments, and datasets being organized and managed by sophisti-
cated laboratory information systems. Increasingly, we will also see the researchers’ 
notes move from paper to screen in the form of electronic laboratory notebooks, en-
abling them to better integrate with the rest of the information being generated. In 
areas of clinical significance, these will also link to biopsy and patient information. 
And so, from lab bench to research paper to clinic, from one finding to another, we 
will join the dots as we explore terra incognita, mapping out detailed relationships 
where before we had only a few crude lines on an otherwise blank chart.

Scientific knowledge—indeed, all of human knowledge—is fundamentally con-
nected [12], and the associations are every bit as enlightening as the facts them-
selves. So even as the quantity of data astonishingly balloons before us, we must 
not overlook an even more significant development that demands our recognition 
and support: that the information itself is also becoming more interconnected. 
One link, tag, or ID at a time, the world’s data are being joined together into a 
single seething mass that will give us not just one global computer, but also one 
global database. As befits this role, it will be vast, messy, inconsistent, and con-
fusing. But it will also be of immeasurable value—and a lasting testament to our 
species and our age.
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The Way Forward

he multi-disciplinary nature of the articles collected in this book offers 
a unique perspective on data-driven scientific discovery—and a glimpse 
into an exciting future.

As we move into the second decade of the 21st century, we face an 
extraordinary range of challenges—healthcare, education, energy and the environ-
ment, digital access, cyber-security and privacy, public safety, and more. But along 
with the other contributors to this book, I believe these challenges can be trans-
formed into opportunities with the help of radical new developments in science 
and technology.

As Jim Gray observed, the first, second, and third paradigms of science— 
empirical, analytical, and simulation—have successfully carried us to this point in 
history. Moreover, there is no doubt that if we rely on existing paradigms and tech-
nologies, we will continue to make incremental progress. But if we are to achieve 
dramatic breakthroughs, new approaches will be required. We need to embrace the 
next, fourth paradigm of science.

Jim’s vision of this paradigm called for a new scientific methodology focused  
on the power of data-intensive science. Today, that vision is becoming reality. Com-
puting technology, with its pervasive connectivity via the Internet, already under-
pins almost all scientific study. We are amassing previously unimaginable amounts 
of data in digital form—data that will help bring about a profound transforma-
tion of scientific research and insight. At the same time, computing is on the cusp  
of a wave of disruptive technological advances—such as multicore architecture,  
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client-plus-cloud computing, natural user interfaces, and quantum computing—
that promises to revolutionize scientific discovery.

Data-intensive science promises breakthroughs across a broad spectrum. As the 
Earth becomes increasingly instrumented with low-cost, high-bandwidth sensors, 
we will gain a better understanding of our environment via a virtual, distributed 
whole-Earth “macroscope.” Similarly, the night sky is being brought closer with 
high-bandwidth, widely available data-visualization systems. This virtuous circle of 
computing technology and data access will help educate the public about our planet 
and the Universe at large—making us all participants in the experience of science 
and raising awareness of its immense benefit to everyone.

In healthcare, a shift to data-driven medicine will have an equally transforma-
tive impact. The ability to compute genomics and proteomics will become feasible 
on a personal scale, fundamentally changing how medicine is practiced. Medical 
data will be readily available in real time—tracked, benchmarked, and analyzed 
against our unique characteristics, ensuring that treatments are as personal as we 
are individual. Massive-scale data analytics will enable real-time tracking of dis-
ease and targeted responses to potential pandemics. Our virtual “macroscope” can 
now be used on ourselves, as well as on our planet. And all of these advances will 
help medicine scale to meet the needs of the more than 4 billion people who today 
lack even basic care.

As computing becomes exponentially more powerful, it will also enable more 
natural interactions with scientists. Systems that are able to “understand” and have 
far greater contextual awareness will provide a level of proactive assistance that 
was previously available only from human helpers. For scientists, this will mean 
deeper scientific insight, richer discovery, and faster breakthroughs. Another  
major advance is the emergence of megascale services that are hosted in the cloud 
and that operate in conjunction with client computers of every kind. Such an  
infrastructure will enable wholly new data delivery systems for scientists—offering 
them new ways to visualize, analyze, and interact with their data, which will in 
turn enable easier collaboration and communication with others.

This enhanced computing infrastructure will make possible the truly global 
digital library, where the entire lifecycle of academic research—from inception 
to publication—will take place in an electronic environment and be openly avail-
able to all. During the development of scientific ideas and subsequent publishing,  
scientists will be able to interact virtually with one another—sharing data sources, 
workflows, and research. Readers, in turn, will be able to navigate the text of a 

THE WAY FORWARD
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publication and easily view related presentations, supporting images, video, audio, 
data, and analytics—all online. Scientific publication will become a 24/7, world-
wide, real-time, interactive experience.

I am encouraged to see scientists and computer scientists working together to 
address the great challenges of our age. Their combined efforts will profoundly and 
positively affect our future.
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The well-formed.eigenfactor project visualizes information flow in science. 
It came about as a collaboration between the Eigenfactor project (data 
analysis) and Moritz Stefaner (visualization). This diagram shows the  
citation links of the journal Nature. More information and visualizations 
can be found at http://well-formed.eigenfactor.org.
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Conclusions

y the mid-1990s, jim gray had recognized that the next “big data” challeng-
es for database technology would come from science and not from com-
merce. He also identified the technical challenges that such data-intensive 
science would pose for scientists and the key role that IT and computer 

science could play in enabling future scientific discoveries. The term “eScience” 
was coined in the year 2000 by John Taylor, when he was director general of the 
UK Research Councils. Taylor had recognized the increasingly important role that 
IT must play in the collaborative, multidisciplinary, and data-intensive scientific re-
search of the 21st century and used the term eScience to encompass the collection 
of tools and technologies needed to support such research. In recognition of the 
UK eScience initiative, Jim Gray called his research group at Microsoft Research 
the eScience Group, and he set about working with scientists to understand their 
problems and learn what tools they needed.

In his talk to the Computer Science and Telecommunications Board of the U.S. 
National Research Council in 2007, Jim expanded on his vision of data-intensive 
science and enumerated seven key areas for action by the funding agencies:

1. Foster both the development of software tools and support for these tools.
2. Invest in tools at all levels of the funding pyramid.
3. Foster the development of generic Laboratory Information Management  

Systems (LIMS).
4. Foster research into scientific data management, data analysis, data visualiza-

tion, and new algorithms and tools.

B
TONY HEY, STEWART TANSLEY, AND KRISTIN TOLLE |  Microsoft Research
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5. Establish digital libraries that support other sciences in the same way the  
National Library of Medicine supports the bio-sciences.

6. Foster the development of new document authoring tools and publication  
models.

7. Foster the development of digital data libraries that contain scientific data (not 
just the metadata) and support integration with published literature.

We believe that these challenges to the funding agencies are just as important 
today. This is why we have introduced this collection of essays, along with a version 
of Jim’s talk to the NRC-CSTB constructed from the transcript of his lecture and 
his presentation slides. It is also educational to see the continuing momentum and 
progress of the eScience community since the report “Towards 2020 Science” pub-
lished by our colleagues at Microsoft Research, Cambridge, UK.1 That was based 
on a workshop in July 2005, attended by some of the authors in this new book, and 
subsequently inspired Nature’s “2020 Computing” special issue in March 2006.2

At the heart of scientific computing in this age of the Fourth Paradigm is 
a need for scientists and computer scientists to work collaboratively—not in a  
superior/subordinate relationship, but as equals—with both communities fuel-
ing, enabling, and enriching our ability to make discoveries that can bring about 
productive and positive changes in our world. In this book, we have highlighted 
healthcare and the environment, just two areas in which humanity faces some of its 
biggest challenges. To make significant progress, the research community must be 
supported by an adequate cyberinfrastructure comprising not only the hardware 
of computing resources, datacenters, and high-speed networks but also software 
tools and middleware. Jim also envisaged the emergence of a global digital research 
library containing both the research literature and the research data. Not only are 
we seeing the maturing of data-intensive science, but we are also in the midst of 
a revolution in scholarly communication. This is driven not only by technologies 
such as the Internet, Web 2.0, and semantic annotations but also by the worldwide 
movement toward open access and open science.

This book is really a labor of love. It started with Jim’s desire to enable scientific 
research through the technologies of computer science—cutting across the disci-
plines highlighted herein and beyond. We see this book as a continuation of Jim’s 
work with the science community. We deliberately asked our scientific contributors 

CONCLUSIONS 

1 http://research.microsoft.com/en-us/um/cambridge/projects/towards2020science/background_overview.htm 
2 Nature, vol. 440, no. 7083, Mar. 23, 2006, pp. 383–580.
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to move out of their professional comfort zones and share their visions for the fu-
ture of their research fields on a 5-to-10-year horizon. We asked them to write their 
contributions not only in essay form, which is often a greater challenge than writ-
ing a purely technical research article, but often in collaboration with a computer 
scientist. We are grateful to all of our contributors for rising to this challenge, and 
we hope that they (and you!) will be pleased with the result. 

Several decades ago, science was very discipline-centric. Today, as evidenced by 
the articles in this book, significant advances are being made as a result of multi-
disciplinary collaboration—and will continue to be made into the future. The essays 
in this book present a current snapshot of some of the leading thinking about the 
exciting partnership between science and computer science—a data revolution—
which makes this information timely and potentially fleeting. However, it is our 
fervent hope and belief that the underlying message presented by the totality of 
these articles will be durable for many years.

Finally, we offer this book as a call to action for the entire research community, 
governments, funding agencies, and the public. We urge collaboration toward a 
common goal of a better life for all humanity. We find ourselves in a phase in which 
we need to use our scientific understanding to achieve specific goals for the sake of 
humanity’s survival. It is clear that to achieve this aim, we very much need experts 
with deep scientific knowledge to work closely with those who have deep experi-
ence with technology. 

This situation is somewhat analogous to the 1940s, when U.S. and European phys-
icists answered an urgent call from governments to collaborate on the Manhattan 
Project. Today, scientists must collaborate globally to solve the major environmental 
and health problems facing humanity in a race that is perhaps even more urgent. 
And ironically, the nuclear physics developed in the Manhattan Project is likely to 
provide part of the answer in supplying the world with zero-carbon energy.

Tony Hey, Kristin Tolle, 
and Stewart Tansley

Microsoft External Research,
http://research.microsoft.com/ 
collaboration

http://research.microsoft.com/collaboration
http://research.microsoft.com/collaboration
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we hope this book will inspire you to take action as well as embark on further 
study. We are “walking the talk” ourselves at Microsoft Research. For example, we 
have reformulated our academic partnership organization, External Research, to 
focus on the themes presented in this book. 

These themes incorporate active research in dynamic fields, so it is hard to track 
and predict the future evolution of the ideas presented in this book. But here are 
some suggested ways to remain engaged and to join in the dialogue:

• If you’re a scientist, talk to a computer scientist about your challenges, and vice 
versa. 

• If you’re a student, take classes in both science and computer science. 

• If you’re a teacher, mentor, or parent, encourage those in your care toward 
interdisciplinary study in addition to giving them the option to specialize.

• Engage with the editors and authors of this book through the normal scholarly 
channels.

• Keep up to date with our eScience research collaborations through our Web 
site: http://research.microsoft.com.

• Be active in the eScience community—at the Fourth Paradigm Web site below, 
we suggest helpful resources. 

www.fourthparadigm.org

N ExT STE pS

NEXT STEPS 
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A Few Words About Jim… 

uring award winner and american computer scientist Dr. James  
Nicholas “Jim” Gray (born 1944, missing at sea on January 28, 2007) 
was esteemed for his groundbreaking work as a programmer, database  
expert, engineer, and researcher. He earned his Ph.D. from the Univer-

sity of California, Berkeley, in 1969—becoming the first person to earn a doctorate 
in computer science at that institution. He worked at several major high-tech com-
panies, including Bell Labs, IBM Research, Tandem, Digital Equipment Corpora-
tion, and finally Microsoft Research in Silicon Valley.

Jim joined Microsoft in 1995 as a Senior Researcher, ultimately becoming a 
Technical Fellow and managing the Bay Area Research Center (BARC). His pri-
mary research interests were large databases and transaction processing systems. 
He had a longstanding interest in scalable computing—building super-servers and 
work group systems from commodity software and hardware. His work after 2002 
focused on eScience: applying computers to solve data-intensive scientific problems. 
This culminated in his vision (with Alex Szalay) of a “fourth paradigm” of science, 
a logical progression of earlier, historical phases dominated by experimentation, 
theory, and simulation. 

Jim pioneered database technology and was among the first to develop the tech-
nology used in computerized transactions. His work helped develop e-commerce, 
online ticketing, automated teller machines, and deep databases that enable the 
success of today’s high-quality modern Internet search engines. 

In 1998, he received the ACM A.M. Turing Award, the most prestigious honor in 
computer science, for “seminal contributions to database and transaction process-
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ing research and technical leadership in system implementation.” He was appointed 
an IEEE Fellow in 1982 and also received the IEEE Charles Babbage Award. 

His later work in database technology has been used by oceanographers,  
geologists, and astronomers. Among his accomplishments at Microsoft were the 
TerraServer Web site in collaboration with the U.S. Geological Survey, which paved 
the way for modern Internet mapping services, and his work on the Sloan Digital 
Sky Survey in conjunction with the Astrophysical Research Consortium (ARC) and 
others. Microsoft’s WorldWide Telescope software, based on the latter, is dedicated 
to Jim.

“Jim always reached out in two ways—technically and personally,” says David 
Vaskevitch, Microsoft’s senior corporate vice president and chief technical officer 
in the Platform Technology & Strategy division. “Technically, he was always there 
first, pointing out how different the future would be than the present.”

“Many people in our industry, including me, are deeply indebted to Jim for his 
intellect, his vision, and his unselfish willingness to be a teacher and a mentor,” 
says Mike Olson, vice president of Embedded Technologies at Oracle Corporation. 
Adds Shankar Sastry, dean of the College of Engineering at UC Berkeley, “Jim was 
a true visionary and leader in this field.”

“Jim’s impact is measured not just in his technical accomplishments, but also in 
the numbers of people around the world whose work he inspired,” says Rick Rashid, 
senior corporate vice president at Microsoft Research.

Microsoft Chairman Bill Gates sums up Jim’s legacy in this way: “The impact of 
his thinking is continuing to get people to think in a new way about how data and 
software are redefining what it means to do science.”

Such sentiments are frequently heard from the myriad researchers, friends, and 
colleagues who interacted with Jim over the years, irrespective of their own promi-
nence and reputation. Known, loved, and respected by so many, Jim Gray needs no 
introduction, so instead we dedicate this book to him and the amazing work that 
continues in his absence. 

—The Editors

A FEW WORDS ABOUT JIM...
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exa- E 1,000,000,000,000,000,000 1018 quintillion

peta- P 1,000,000,000,000,000 1015 quadrillion

tera- T 1,000,000,000,000 1012 trillion

giga- G 1,000,000,000 109 billion

mega- M 1,000,000 106 million

kilo- k 1,000 103 thousand

hecto- h 100 102 hundred

deca- da 10 101 ten

- - 1 100 one

deci- d 0.1 10−1 tenth

centi- c 0.01 10−2 hundredth

milli- m 0.001 10−3 thousandth

micro- µ 0.000001 10−6 millionth

nano- n 0.000000001 10−9 billionth

pico- p 0.000000000001 10−12 trillionth

G LOSSARY

POWERS OF TEN

COmmON ABBREvIATIONS

 ASKAP Australian Square Kilometre Array Pathfinder
 ATLUM Automatic Tape-Collecting Lathe Ultramicrotome
 AUV autonomous underwater vehicle
 BPEL Business Process Execution Language
 CCD charge-coupled device
 CEV Center for Environmental Visualization
 CLADDIER Citation, Location, And Deposition in Discipline and 
  Institutional Repositories

 CML Chemistry Markup Language
 CPU central processing unit
 CSTB Computer Science and Telecommunications Board
 DAG directed acyclic graph
 DDBJ DNA Data Bank of Japan

Adapted from http://en.wikipedia.org/wiki/Order_of_magnitude
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 DOE Department of Energy 
 EBI European Bioinformatics Institute
 ECHO Earth Observing System Clearinghouse
 EHR electronic health record
 EMBL  European Molecular Biology Laboratory
 EMBL-Bank European Molecular Biology Laboratory Nucleotide   
  Sequence Database

 EOSDIS Earth Observing System Data and Information System
 ET evapotranspiration
 FDA Food and Drug Administration 
 FFT Fast Fourier Transform
 FLUXNET A global network of micrometeorological tower sites
 fMRI functional magnetic resonance imaging
 FTP File Transfer Protocol
 GCMD NASA’s Global Change Master Directory
 GEOSS Global Earth Observation System of Systems
 GOLD Genomes OnLine Database
 GPU graphics processing unit
 GPGPU general-purpose graphics processing unit
 GUI graphical user interface
 H1N1 swine flu
 INSDC International Nucleotide Sequence Database Collaboration
 IT information technology
 KEGG Kyoto Encyclopedia of Genes and Genomes
 KLAS Keystone Library Automation System
 LEAD Linked Environments for Atmospheric Discovery
 LHC Large Hadron Collider
 LIDAR Light Detection and Ranging
 LLNL Lawrence Livermore National Laboratory
 LONI Laboratory of Neuro Imaging
 MESUR Metrics from Scholarly Usage of Resources 
 MMI Marine Metadata Interoperability
 NASA National Aeronautics and Space Administration
 NHS National Health Service (UK)
 NIH National Institutes of Health
 NLM National Library of Medicine

GLOSSARY
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 NLM DTD National Library of Medicine Document Type Definition 
 NOAA National Oceanic and Atmospheric Administration
 NRC National Research Council
 NSF National Science Foundation
 OAI Open Archives Initiative
 OAI-ORE Open Archives Initiative Object Reuse and Exchange protocol 
 OAI-PMH Open Archives Initiative Protocol for Metadata Harvesting
 OBO Open Biomedical Ontologies 
 OO object-oriented
 OOI Ocean Observatories Initiative
 OWL Web Ontology Language
Pan-STARRS  Panoramic Survey Telescope And Rapid Response System
 PHR personal health record
 PubMed Free National Library of Medicine online database of  
  biomedical journal articles 

 RDF Resource Description Framework
 RDFS RDF Schema
 ROV remotely operated vehicle
 RSS Really Simple Syndication
 SCEC Southern California Earthquake Center
 SOA service-oriented architecture
 SWORD Simple Web-service Offering Repository Deposit
 TCP/IP Transmission Control Protocol/Internet Protocol  
  (the Internet Protocol Suite)

 TM transactional memory
 UNICEF United Nations Children’s Fund
 UniProt Universal Protein Resource
 URI Uniform Resource Identifier
 USGS U.S. Geological Survey
 VT 100  A Digital Equipment Corporation (DEC) video terminal 
 WATERS WATer and Environmental Research Systems Network   
 Network  

 WHO World Health Organization
 XML eXtensible Markup Language
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Anderson, Chris, 218
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Aster Data, 7
astronomy, xx, 39–44
atmospheric science, observations  

motivating next-generation environmental 
science, 45–47

Atom format, 197, 198
Australia, need for national data sharing policy 

framework, 205–207
Australian National Data Service  

(ANDS), xiv–xv

Australian Square Kilometre Array Pathfinder 
(ASKAP), xiii, 147

Automatic Tape-Collecting Lathe Ultramicro-
tome (ATLUM), 79, 80

avatars, in healthcare, 96–97
Axial Seamount, 32
Azure platform, 133

B
basic science vs. science based on applications, 

14–18
Beowulf clusters, xx, xxiv, 126
Berlin Declaration on Open Access to Knowl-

edge in the Sciences and Humanities, 203
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Bing, xxvi
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Bioinformatics Institute)
biological sciences. See Earth and environmen-

tal science; ecology; life sciences
BioMart, 138
biometrics, 71
BioMoby, 167
BlenX language, 101
Blue Gene/L supercomputer, 155
BOINC (Berkeley Open Infrastructure for 

Network Computing), 24
BPEL (Business Process Execution Language), 
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CERN, xiii, 189, 216
CEV (Center for Environmental Visualization), 
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charge-coupled devices (CCDs), 40
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and data-intensive computing, 112–116
as driver of cross-disciplinary research, 
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13–14
and water system management, 14–15

cloud computing
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and ecological synthesis studies, 24–25
exploiting parallelism, 132–133
impact on how scientific research is  

undertaken and disseminated, 26, 166
linking to SQL Server Analysis Services data 

cube, 25
in ocean research, 31
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clusters
in biology, 87–89, 95
of computers, xx, xxiii, xxiv, 6, 126

CMT (Conference Management Tool), xxviii, 
xxix
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role of Internet, 214, 216, 217
role of workflows in data-intensive science, 
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commodity computing, 23, 43, 114, 132, 235
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Snow Network, 23
computational microscopes, 84, 87–89
computational modeling, 56, 93
computational power, 43. See also parallel 

computing
computational thinking, xx, 92
computer scientists, need for collaboration and 

peer relationships with domain scientists, 
7–8, 35, 45–51, 150, 228. See also data-
intensive science; scientific computing

Concept Web Alliance, 195
Condor software, xxiv
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page 229: Tony Hey, Kristin Tolle, and  
Stewart Tansley of Microsoft External  
Research. Vetala Hawkins/Microsoft 
Corporation.

page 234:  Jim Gray on Tenacious,  
January 2006. Photo by Tony Hey.

back cov er:  Microsoft Tag from  
www.microsoft.com/tag. Get  
the free app for your phone at 
http://gettag.mobi and “snap it!”

note: URLs can go offline for various reasons, either temporarily or permanently. Not all  
of the URLs in this book were still live at the time of publication, but we have successfully  
accessed such pages using various services such as Internet Archive’s Wayback Machine,  
www.archive.org/web/web.php.

Book design, copyediting, and production by Katz Communications Group,  
www.katzcommunications.com
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“The impact of Jim Gray’s thinking is continuing to get people to think in a new 
way about how data and software are redefining what it means to do science.”

—Bill Gates

“I often tell people working in eScience that they aren’t in this field because  
they are visionaries or super-intelligent—it’s because they care about science  

and they are alive now. It is about technology changing the world, and science 
taking advantage of it, to do more and do better.”

—Rhys FRancis, austRalian eReseaRch inFRastRuctuRe council

“One of the greatest challenges for 21st-century science is how we respond to this 
new era of data-intensive science. This is recognized as a new paradigm beyond 

experimental and theoretical research and computer simulations of natural 
phenomena—one that requires new tools, techniques, and ways of working.”

—DouGlas Kell, univeRsity oF ManchesteR

“The contributing authors in this volume have done an extraordinary job of  
helping to refine an understanding of this new paradigm from a variety of  

disciplinary perspectives.”
—GoRDon Bell, MicRosoFt ReseaRch

aBoUT THe FoUrTH ParadiGM 
This book presents the first broad look at the rapidly emerging field of data- 
intensive science, with the goal of influencing the worldwide scientific and com-
puting research communities and inspiring the next generation of scientists. 
Increasingly, scientific breakthroughs will be powered by advanced computing 
capabilities that help researchers manipulate and explore massive datasets. The 
speed at which any given scientific discipline advances will depend on how well 
its researchers collaborate with one another, and with technologists, in areas of 
eScience such as databases, workflow management, visualization, and cloud- 
computing technologies. This collection of essays expands on the vision of pio-
neering computer scientist Jim Gray for a new, fourth paradigm of discovery based 
on data-intensive science and offers insights into how it can be fully realized. 
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